Cho hình thang cân ABCD (AB//CD) . Gọi I là giao điểm của AC và BD. a) CM DÂC = góc CBD; b) IA=IB; c) Cho AB<CD; CM IA<IC
1) Cho hình thang cân ABCD (AB // CD). a) Chứng minh:. b) Gọi E là giao điểm của AC và BD. Chứng minh: . 2) Cho hình thang cân ABCD có đáy nhỏ CD = a , . Đường chéo AC vuông góc với cạnh bên BC. a) Tính các góc của hình thang. b) Chứng minh AC là phân giác của góc . c) Tính diện tích của hình thang.
Cho hình thang cân ABCD (AB//CD). Gọi E là giao ddieemrr 2 đường chéo AC và BD. I là giao điểm 3 đường trung trực của tam giác EAD.
CM rằng IE cắt và vuông góc BC
1.Cho hình thang cân ABCD(AB//CD), góc BDC=45o. Gọi O là giao điểm của AC và BD.
a. CM tam giác DOC vuông cân
b. Tính diện tích của hình thang ABCD, biết BD=6cm
2. a. Tìm x của tứ giác ABCD, biết góc A=60 độ, góc C= 90 độ, góc D=63 độ
b. Cho hình thang ABCD(AB//CD). E,F lần lượt là trung điểm AD, BC. Tính độ dài đoạn thẳng EF, biết AB=3cm,CD=9cm
Cho hình thang cân ABCD (AB//CD) có góc BDC= 45 độ. Gọi O là giao điểm của AC và BD:
a. Chứng minh tam giác DOC vuông cân
b. Tính diện tích hình thang ABCD, biết BD=6cm
Cho hình thang cân ABCD ( AB//CD , AB < DC ) . Kẻ AH vuông góc vs AB cắt DB tại h . Kẻ BK vuông góc với AB và cắt AC tại K a) Tứ giác AHKB là hình gì . tại sao b) gọi E là trung điểm cua AB , F là trung điểm của DC . gọi i là giao diểm của AC và BD , g là giao điểm của ch và dk . cm : ei , g , f thẳng hàng
1) Tam giác vuông ABH = tam giác vuông BAK (Góc vuông A = góc vuông B, cạnh AB chung, góc \(\widehat{KAB}=\widehat{HBA}\))
=> AH = BK
Mà AH // BK cì cùng vuông góc với AB => ABKH là hình bình hành, lại có 2 góc vuông nên nó là hình chữ nhật
b) Gọi O là trung điểm của HK. Ta có E, I , O thẳng hàng do ABKH là hình chữ nhật (các bạn tự chứng minh)
HK // AB // DC => E, O, F thẳng hàng
HKDC là hình thang cân => O, G, F cũng thẳng hàng
=> E, I, O, G, F thảng hàng
Bài 1: Cho hình thang cân ABCD ( AB // CD) Gọi E là giao điểm của AC và BD. Chứng minh EA = EB.
Bài 2: Cho hình thang cân ABCD (AB//CD) có AB=3,BC=CD=13(cm). Kẻ các đường cao AK và BH.
a) Chứng minh rằng CH=DK.
b) Tính độ dài BH.
Bài 3: Hình thang cân ABCD (AB//CD) có Cˆ=600, DB là tia phân giác của góc D, AB=4cm.
a) Chứng minh rằng BD vuông góc với BC.
b) Tính chu vi hình thang.
Bài 4 : Cho hình thang MNPQ (MN là đáy nhỏ) có 2 đường chéo MP và NQ cắt nhau tại O và NMPˆ=MNQˆA.
a) Chứng minh tam giác OMN và OPQ cân tại O.
b) Chứng minh tứ giác MNPQ là hình thang cân.
c) Qua O vẽ đường thẳng EF//QP (E∈MQ,F∈NP). Chứng minh MNFE, FEQP là những hình thang cân.
Bài 5: Cho hình thang cân ABCD (AB//CD, AB < CD). AD cắt BC tại O.
a) Chứng minh rằng ΔOAB cân.
b) Gọi I, J lần lượt là trung điểm của AB và CD. Chứng minh rằng ba điểm I, J, O thẳng hàng.
c) Qua điểm M thuộc cạnh AC, vẽ đường thẳng song song với CD, cắt BD tại N. Chứng minh rằng MNAB, MNDC là các hình thang cân.
Bài 1:
Xét ΔABC và ΔBAD có
AB chung
BC=AD
AC=BD
Do đó: ΔABC=ΔBAD
Suy ra: \(\widehat{BAC}=\widehat{ABD}\)
hay \(\widehat{EAB}=\widehat{EBA}\)
hay ΔEAB cân tại E
Cho hình thang cân ABCD ( AB//CD , AB < DC ) . Kẻ AH vuông góc vs AB cắt DB tại h . Kẻ BK vuông góc với AB và cắt AC tại K
a) Tứ giác AHKB là hình gì . tại sao
b) gọi E là trung điểm cua AB , F là trung điểm của DC . gọi i là giao diểm của AC và BD , g là giao điểm của ch và dk . cm : ei , g , f thẳng hàng
Bạn xem hướng dẫn ở đây nhé:
Câu hỏi của hoang duong sang - Toán lớp 8 - Học toán với OnlineMath
Cho hình thang cân ABCD ( AB//CD , AB < DC ) . Kẻ AH vuông góc vs AB cắt DB tại h . Kẻ BK vuông góc với AB và cắt AC tại K
a) Tứ giác AHKB là hình gì . tại sao
b) gọi E là trung điểm cua AB , F là trung điểm của DC . gọi i là giao diểm của AC và BD , g là giao điểm của ch và dk . cm : ei , g , f thẳng hàng
Bạn xem hướng dẫn ở đường link sau nhé:
Câu hỏi của hoang duong sang - Toán lớp 8 - Học toán với OnlineMath
Cho hình thang cân ABCD (AB // CD) có . Gọi O là giao điểm của AC và BD.
a) Chứng minh tam giác DOC vuông cân.
b) Tính diện tích của hình thang ABCD, biết BD = 6 (cm).
a: Xét ΔADC và ΔBCD có
AD=BC
AC=BD
DC chung
Do đó: ΔADC=ΔBCD
Suy ra: \(\widehat{ACD}=\widehat{BDC}\)
hay \(\widehat{ODC}=\widehat{OCD}\)
Xét ΔOCD có \(\widehat{ODC}=\widehat{OCD}\)
nên ΔCOD cân tại O
Cho hình thang cân ABCD (AB//CD và AB < CD) gọi K là giao điểm của AD và BC, I là giao điểm của AC và BD, M là trung điểm CD. Chứng minh M, K, I thẳng hàng
1]
a]
Ta có:
AI/IM = AB/DM
BK/KM = AB/MC
Do DM =MC
=> AI/IM = BK/KM
=> IK//AB
b]
IE/DM = AI/AM
KF/MC = BK/BM
Mà AI/AM = BK/BM (do IK//AB)
=> IE/DM = KF/MC mà DM=MC
=> IE = KF
2]
a}
Ta có:
AE/EK = AB/DK
BF/FI = AB/CI
Do ABID và ABCK là h..b.hành
=> CK=DI =AB
=> DK = CI = CD -AB
=> AE/EK = NF/FI
=> EF//AB
b}
Ta có EF/CK =AF/AC = AB/CD
=> EF.CD = CK.AB = AB^2 (do CK =AB)
3]
a}
Ta có:
MB/MF = MC/MA (Xét BC//AF)
ME/MB = MC/MA (Xét CE//AB)
=> MB/MF = ME/MB
=> MB^2 = ME.MF
b}
BM/MF = MC/AC (Xét BC//AF)
BM/ME = AM/AC (Xét CE//AB)
=> BM/MF + BM/ME = MC/AC + AM/AC =1
=> BM/MF + BM/ME =1
=> 1/BF+1/BE=1/BM