Biết a < b và BCNN(a ; b) = 900 ; ƯCLN(a ; b) = 10. Tìm hai số a và b đó.
Tìm a,b biết :a)a-b=7 và BCNN (a,b)=140
b)ƯCLN(a,b)=10 và BCNN(a,b)=900
a, Gọi d = (a,b) => a = md, b = nd (m,n thuộc Z+; (m,n) = 1)
Theo định nghĩa của BCNN ta có: [a,b] = dmn = 140
Ta có: a - b = 7
=>md - nd = 7
=>d(m - n) = 7
=> d là ƯC(7,140)
=> d = 1 hoặc d = 7
Với d = 1 \(\Rightarrow\orbr{\begin{cases}m-n=7\\mn=140\end{cases}}\) không có m,n thỏa mãn
Với d = 7 \(\Rightarrow\orbr{\begin{cases}m-n=1\\mn=20\end{cases}}\Rightarrow\orbr{\begin{cases}m=5\\n=4\end{cases}\Rightarrow\orbr{\begin{cases}a=5.7=35\\b=4.7=28\end{cases}}}\)
b, Giả sử \(a\le b\)
Vì (a,b)=10 => a=10m,b=10n \(\left(m\le n;m,n\in Z^+;\left(m,n\right)=1\right)\)
Theo định nghĩa của BCNN ta có: [a,b] = m.n.d = m.n.10 = 900 => m.n = 90
Ta có bảng:
m | 1 | 2 | 5 | 9 |
n | 9 | 5 | 2 | 1 |
a | 10 | 20 | 50 | 90 |
b | 90 | 50 | 20 | 10 |
Tìm các số tự nhiên a và b (a<b), biết:
a) ƯCLN ( a, b ) = 15 và BCNN ( a, b ) = 180
b) ƯCLN ( a, b ) = 11 và BCNN ( a, b ) = 484
Trước tiên, ta cần chứng minh 2 bổ đề sau:
Bổ đề 1: Cho 2 số tự nhiên \(a,b\) khác 0. Khi đó \(ƯCLN\left(a,b\right).BCNN\left(a,b\right)=a.b\).
Bổ đề 2: Cho 2 số tự nhiên \(a,b\) khác 0. Khi đó:\(ƯCLN\left(a,b\right)+BCNN\left(a,b\right)\ge a+b\)
Chứng minh:
Bổ đề 1: Đặt \(\left(a,b\right)=1\) (từ nay ta sẽ kí hiệu \(\left(a,b\right)=ƯCLN\left(a,b\right)\) và \(\left[a;b\right]=BCNN\left(a,b\right)\) cho gọn) \(\Rightarrow\left\{{}\begin{matrix}a=dk\\b=dl\end{matrix}\right.\left(\left(k,l\right)=1\right)\)
Nên \(\left[a,b\right]=dkl\) \(\Rightarrow\left(a;b\right)\left[a;b\right]=dk.dl=ab\). Ta có đpcm.
Bổ đề 2: Vẫn giữ nguyên kí hiệu như ở chứng minh bổ đề 1. Ta có \(k\ge1,l\ge1\) nên \(\left(k-1\right)\left(l-1\right)\ge0\)
\(\Leftrightarrow kl-k-l+1\ge0\)
\(\Leftrightarrow kl+1\ge k+l\)
\(\Leftrightarrow dkl+d\ge dk+dl\)
\(\Leftrightarrow\left[a,b\right]+\left(a,b\right)\ge a+b\) (đpcm)
Vậy 2 bổ đề đã được chứng minh.
a) Áp dụng bổ đề 1, ta có \(ab=\left(a,b\right)\left[a,b\right]=15.180=2700\) và \(a+b\le\left(a,b\right)+\left[a,b\right]=195\). Do \(b\ge a\) \(\Rightarrow a^2\le2700\Leftrightarrow a\le51\)
Mà \(15|a\) nên ta đi tìm các bội của 15 mà nhỏ hơn 51:
\(a\in\left\{15;30;45\right\}\)
Khi đó nếu \(a=15\) thì \(b=180\) (thỏa)
Nếu \(a=30\) thì \(b=90\) (loại)
Nếu \(a=45\) thì \(b=60\) (thỏa)
Vậy có 2 cặp số a,b thỏa mãn ycbt là \(15,180\) và \(45,60\)
Câu b làm tương tự.
Tìm các số từ nhiên a,b (a<b) biết:
a, a+b= 336 và ƯCLN(a,b)=24
b, ƯCLN (a,b)=6 và BCNN(a,b)=36
c,BCNN(a,b)=150 và ab=3750
d, ab=180 và BCNN(a,b)=20.ƯCLN(a,b)
e, a+b=40 và BCNN(a,b)=7.ƯCLN(a,b)
g,ƯCLN(a,b)+BCNN(a,b)=21
a,Tìm hai số tự nhiên a và b biết BCNN(a,b) - UCLN(a,b)=5
b,Tìm hai số tự nhiên a và b biết BCNN(a,b) - UCLN(a,b)=35
Tìm 2 số nguyên dương a và b biết:
a, BCNN(a;b) = 240 và ƯCLN(a;b)
b, a.b = 180 và BCNN(a;b) = 60
c, a.b = 216 và ƯCLN(a;b) = 6
d, a:b = 2,6 và ƯCLN(a;b) = 5
e, a + b = 42 và BCNN(a;b) = 72
Câu hỏi của Bùi Đức Lộc - Tiếng Việt lớp 1 - Học toán với OnlineMath
Nhớ xem và !
a, 24 và 10
b, 6 và 30
c, 6 và 36
d, <không có trường hợp nào>
e, 36 và 6
Chúc bạn học giỏi !
<Lưu ý : Bạn xem lại câu d>
d) Do (a,b) = 5 => a = 5m
b = 5n
( m,n ) = 1
a : b = 2,6 => a/b = 13/5 = 5m/5n => m = 13 ; n =5
=> a = 65 b = 25
Tìm 2 số a,b biết
a)ƯCLN(a,b)=12 và BCNN(a,b)=72
b)a.b=1440 và BCNN(a,b)=240
tìm 2 số tự nhiên a,b biết:
a)5a=13b và ƯCLN (a,b)=48
b)BCNN (a,b)=360 và ab=6480
c)a+b=40 và BCNN (a,b)=7*ƯCLN (a,b)
a.
Vì $ƯCLN(a,b)=48$ nên đặt $a=48x, b=48y$ với $(x,y)=1$. Ta có:
$5a=13b$
$\Rightarrow 5.48x=13.48y$
$\Rightarrow 5x=13y$
$\Rightarrow 5x\vdots 13; 13y\vdots 5$
$\Rightarrow x\vdots 13; y\vdots 5$. Đặt $x=13m, y=5n$. Do $(x,y)=1$ nên $(n,m)=1$.
Ta có: $5.13m=13.5n\Rightarrow m=n$. Vì $(m,n)=1$ nên $m=n=1$
$\Rightarrow x=13; y=5$
$\Rightarrow x=13.48=624; y=5.48=240$
b.
Gọi $ƯCLN(a,b)=d$ thì $a=dx, b=dy$ với $(x,y)=1$.
Khi đó:
$BCNN(a,b)=dxy=360$
$ab=dx.dy=d.dxy=6480$
$\Rightarrow d.360=6480$
$\Rightarrow d=18$
$\RIghtarrow xy=360:d=360:18=20$
Do $(x,y)=1$ nên $x,y$ có thể nhận các cặp giá trị là:
$(x,y)=(1,20), (4,5), (5,4), (20,1)$
Đến đây bạn thay vào tìm $a,b$ thôi.
c.
Gọi $ƯCLN(a,b)=d$ thì $a=dx, b=dy$ với $(x,y)=1$. Khi đó:
$BCNN(a,b)=7.ƯCLN(a,b)$
$\Rightarrow dxy=7.d$
$\Rightarrow xy=7$. Mà $(x,y)=1$ nên $x,y$ có thể nhận các giá trị là:
$(x,y)=(1,7), (7,1)$
$\Rightarrow x+y=8$.
$a+b=dx+dy=40=d(x+y)=8d\Rightarrow d=5$
Nếu $(x,y)=(1,7)\Rightarrow a=dx=5.1=5; b=dy=5.7=35$
Nếu $(x,y)=(7,1)\Rightarrow a=dx=5.7=35; b=dy=5.1=5$
tìm 2 số tự nhiên a và b biết
a)BcNN(a,b)=300 và ƯcLN(a,b)=15
b)a.b =2940 và BcNN(a,b)=210
Tìm hai số tự nhiên a và b biết :
a. ab = 2400 và BCNN ( a, b ) = 120
b. ƯCLN ( a, b ) = 5 và BCNN ( a, b ) = 60
a. Bài làm :
Ta có : \(\hept{\begin{cases}ab=2400\\BCNN\left(a,b\right)=120\end{cases}}\)
\(\Rightarrow\)ƯCLN(a,b)=ab:BCNN(a,b)=2400:120=20
Vì ƯCLN(a,b)=20 nên ta có : \(\hept{\begin{cases}a=20m\\b=20n\\ƯCLN\left(m,n\right)=1\end{cases}}\)
Mà ab=2400
\(\Rightarrow\)20m.20n=2400
\(\Rightarrow\)400m.n=2400
\(\Rightarrow\)mn=6
Vì ƯCLN(m,n)=1 nên ta có bảng sau :
m 1 6 2 3
n 6 1 3 2
a 20 120 40 60
b 120 20 60 40
Vậy (a;b)\(\in\){(20;120);(120;20);(40;60);(60;40)}
b. Bài làm :
Ta có : ƯCLN(a,b)=5
BCNN(a,b)=60
\(\Rightarrow\)ab=ƯCLN(a,b).BCNN(a,b)=5.60=300
Vì ƯCLN(a,b)=5 nên ta có : a=5m ; b=5n ; ƯCLN(m,n)=1 và m, n là các số tự nhiên
Mà ab=300
\(\Rightarrow\)5m.5n=300
\(\Rightarrow\)25m.n=300
\(\Rightarrow\)mn=12
Vì ƯCLN(m,n)=1 nên ta có bảng sau :
m 1 12 3 4
n 12 1 4 3
a 5 60 15 20
b 60 5 20 15
Vậy (a;b)\(\in\){(5;60);(60;5):(20;15):(15;20)}