Tính : \(\left(a-b\right)^{2015}\) biết a + b = 9 ; ab = 20 và a < b
cho các số a,b,c thỏa \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c};\)(a,b,c khác 0)
Tính \(N=\left(a^{15}+b^{15}\right)\left(b^{17}+c^{27}\right)\left(c^{2015}+a^{2015}\right)\)
Từ gt , ta có :
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{-a-b}{c\left(a+b+c\right)}\)
\(\Leftrightarrow\left(a+b\right)c\left(a+b+c\right)=-\left(a+b\right)ab\)
\(\Rightarrow0=\left(a+b\right)\left(ca+cb+c^2\right)-\left[-\left(a+b\right)ab\right]=\left(a+b\right)\left(ca+cb+c^2+ab\right)=\left(a+b\right)\left(c+a\right)\left(c+b\right)\)
\(\Rightarrow a+b=0\) hoặc \(c+a=0\) . Gỉa sử \(a=-b\) thì \(a^{15}=-b^{15}\) nên \(a^{15}+b^{15}=0\)
\(\Rightarrow N=0\)
Biết rằng \(\left(a-b+2015\right),\left(b-c+2015\right)và\left(c-a+2015\right)\) là ba số nguyên liên tiếp Với a, b, c là các số tự nhiên. Ba số đó là những số nào
Đặt a-b+2015=k ( k là số nguyên)
mà a-b+2015 , b-c+2015,c-a+2015 là ba số nguyên liên tiếp => b-c+2015=k+1
c-a+2015=k+2
Có a-b+2015+b-c+2015+c-a+2015=k+k+1+k+2
<=>6045=3k+3
<=> 6042=3k
<=> k=2014
=> a-b+2015=2014 , b-c+2015=2014+1=2015 , c-a+2015=2014+2=2016
=> ba số nguyên liên tiếp đó là 2014,2015,2016 <=> b=c=a+1 và a,b,c tự nhiên
P/s: Chẳng biết có đúng không
tìm x biết:
\(a)\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|=2\)
\(b)\left|x+1\right|+\left|2x-5\right|+\left|x-9\right|=10\)
mình đag cần rất gấp. mọi ng giúp mình với
\(Cho\)\(a+b=9;ab=20\)và \(a< b\)Tính \(\left(a-b\right)^{2015}\)
38)Tính
a)\(\left(5^4+4^7\right).\left(8^9-2^7\right).\left(2^4-4^2\right)\)
b)\(\left(7^{2015}+7^{2014}\right):7^{2013}\)
c)\(\frac{\left(3.4.2^{16}\right)^2}{11.2^{13}.4^{11}-16^9}\)
a ) Ta thấy :
2^4 = 16
4^2 = 16
16 - 16 = 0
Số nào nhân với 0 cũng bằng 0 nên giá trị biểu thức trên là 0
b ) ( 7^2015 + 7^2014 ) : 7^2013
= 7^2015 : 7^2013 + 7^2014 : 7^2013
= 7^2 + 7
= 49 + 7
= 56
c ) ( 3 . 4 . 2^16 ) ^ 2 / 11 . 2^13 . 4^11 - 16^9
Tính phần mẫu trước .
11 . 2^13 . 4^11 - 16^9 = 11 . 2^13 . ( 2^2 ) ^11 - (2^4)^9 = 11 . 2^13 . 2^22 - 2^36 = 11. 2^35 - 2^36 = 11 . 2^35 - 2^35 . 2 = ( 11 - 2 ) . 2^35 = 9 . 2^35
Phần tử :
( 3 . 4 . 2^16 ) ^ 2 = 3^2 . ( 2^2 ) ^ 2 . ( 2^16 ) ^ 2 = 3 ^ 2 . 2^4 . 2^32 = 9 . 2^36
Vì các thừa số của mẫu và tử đều giống nhau nên có kết quả là 1 .
Cho a,b,c là các số dương . CMR :
\(a^{2016}>=\frac{\left(b+c\right)a^{2015}}{2}+\frac{\left(c+a\right)b^{2015}}{2}+\frac{\left(a+b\right)c^{2015}}{2}\)
Cho 3 số a,b,c thỏa mãn : \(\frac{a}{2014}=\frac{b}{2015}=\frac{c}{2016}\). Tính M=\(4\left(a-b\right)\left(b-c\right)-\left(c-a\right)^2\)
Gọi \(\frac{a}{2014}=\frac{b}{2015}=\frac{c}{2016}=k\Rightarrow a=2014k;b=2015k;c=2016k\left(1\right)\)
Thay (1) vào M ta có :
M=4(2014k-2015k)(2015k-2016k)-(2016k-2014k)2
=>M=4.-k.-k-4k2
=>M=4k2-4k2=0
Vậy M = 0
cho \(\left(a+\sqrt{a^2+2015}\right).\left(b+\sqrt{b^2+2015}\right)=2015.\)
Chứng minh \(a^{2015}+b^{2015}=0\)
Có \(\left(a+\sqrt{a^2+2015}\right)\left(\sqrt{a^2+2015}-a\right)=a^2+2015-a^2=2015\)
\(\Rightarrow\sqrt{a^2+2015}-a=b+\sqrt{b^2+2015}\)
\(\Rightarrow a+b=\sqrt{a^2+2015}-\sqrt{b^2+2015}\)
Tương tự \(a+b=\sqrt{b^2+2015}-\sqrt{a^2+2015}\)
Cộng 2 vế vào ta được \(2\left(a+b\right)=0\)
\(\Leftrightarrow a=-b\)
Ta có: \(a^{2015}+b^{2015}=-b^{2015}+b^{2015}=0\)
Tìm x biết :
a ) \(\left|x-2015\right|=\frac{1}{2}\)
b ) \(\left|x-2015\right|+\left|x-2016\right|=2017\)
a)Vì |x−2015|= 1/2 nên x-2015=-1/2 hoặc x-2015=1/2
Nếu x-2015=-1/2 thì
x=2015+(-1)/2
x=4029/2
Nếu x-2015=1/2 thì
x=2015+1/2
x=4031/2
Vậy x=4029/2
hoặc x=4031/2
b)
Nếu x>2016 thì |x−2015|=x-2015 ,|x−2016|=x-2016
Khi đó: |x−2015|+|x−2016|=2017
=>x-2015+x-2016=2017
=>2x-4031=2017
=>2x=6048=>x=3024(thỏa mãn x>2016)
Nếu 2015<x<2016 thì |x−2015|=x-2015,
|x−2016|=2016-x. khi đó
|x−2015|+|x−2016|=2017
=>x-2015+2016-x=2017
=>1=2017(vô lý loại)
Nếu x>2015 thì |x−2015|=2015-x,|x−2016|=2016-x
Khi đó:
|x−2015|+|x−2016|=2017
=>2015-x+2016-x=2017
=>4031-2x=2017
=>2x=2014=>x=1007(thỏa mãn x<2015)
Vậy x=1007 hoặc x=3024