Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyệt Phong
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 10 2021 lúc 22:51

Bài 1: 

Điểm M nằm trong (O)

Điểm N nằm trên (O)

18 Ngọc Khánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 3 2023 lúc 18:52

loading...  

Nhi Đăng
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 1 2022 lúc 13:57

a: Xét (O) có 

MA là tiếp tuyến

MB là tiếp tuyến

Do đó: MA=MB

hay M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

nên O nằm trên đường trung trực của AB(2)

TỪ (1) và (2) suy ra OM⊥AB

Trần Nam Hải
Xem chi tiết
Ngọc Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 1 2023 lúc 14:39

a: ΔOAC cân tại O

mà OD là đường cao

nên OD là phân giác của góc AOC

Xét ΔOAD và ΔOCD có

OA=OC

góc AOD=góc COD
OD chung

Do đó: ΔOAD=ΔOCD

=>góc OCD=90 độ

=>DC là tiếp tuyến của (O)

b: Xét ΔDCE và ΔDBC có

góc DCE=góc DBC

góc CDE chung

Do đó: ΔDCE đồng dạng với ΔDBC

=>DC/DB=DE/DC

=>DC^2=DB*DE

trannnn
Xem chi tiết
trannnn
14 tháng 8 2021 lúc 10:41

giup minh bai 1 gap voi ah!!

Nguyễn Văn Dũng
Xem chi tiết
Đỗ Vũ Thảo Nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 11 2023 lúc 18:29

a:

Sửa đề: \(AD\cdot AC=AB^2=AO^2-R^2\)

Xét (O) có

ΔBDC nội tiếp

BC là đường kính

Do đó: ΔBDC vuông tại D

=>BD\(\perp\)DC tại D

=>BD\(\perp\)CA tại D

Xét ΔBCA vuông tại B có BD là đường cao

nên \(AD\cdot AC=AB^2\left(1\right)\)

Xét ΔOBA vuông tại B có \(OB^2+BA^2=OA^2\)

=>\(BA^2+R^2=OA^2\)

=>\(BA^2=OA^2-R^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AC=AB^2=OA^2-R^2\)

b: ΔOBE cân tại O

mà OH là đường cao

nên H là trung điểm của BE

Xét ΔBCE có

O,H lần lượt là trung điểm của BC,BE

=>OH là đường trung bình của ΔBCE

=>OH//CE và OH=1/2CE

OH//CE

F\(\in\)OH

Do đó: HF//CE

\(OH=\dfrac{1}{2}CE\)

\(OH=\dfrac{1}{2}FH\)

Do đó: CE=FH

Xét tứ giác CEHF có

CE//HF

CE=HF

Do đó: CEHF là hình bình hành

Hình bình hành CEHF có \(\widehat{FHE}=90^0\)

nên CEHF là hình chữ nhật

ΔOBE cân tại O

mà OH là đường cao

nên OH là phân giác của góc BOE

Xét ΔOBA và ΔOEA có

OB=OE

\(\widehat{BOA}=\widehat{EOA}\)

OA chung

Do đó: ΔOBA=ΔOEA

=>\(\widehat{OBA}=\widehat{OEA}=90^0\)

=>AE là tiếp tuyến của (O)

c: Xét (O) có

ΔBGC nội tiếp

BC là đường kính

Do đó: ΔBGC vuông tại G

=>GB\(\perp\)GC tại G

Xét ΔHEC vuông tại E và ΔHGB vuông tại G có

\(\widehat{EHC}=\widehat{GHB}\)

Do đó: ΔHEC đồng dạng với ΔHGB

=>\(\dfrac{HE}{HG}=\dfrac{HC}{HB}\)

=>\(HE\cdot HB=HG\cdot HC\)

=>\(HG\cdot HC=HB^2\left(3\right)\)

Xét ΔBOA vuông tại B có BH là đường cao

nên \(HO\cdot HA=HB^2\left(4\right)\)

Từ (3) và (4) suy ra \(HG\cdot HC=HO\cdot HA\)

 

Sọt
Xem chi tiết
Yến Nhi
Xem chi tiết
neverexist_
14 tháng 12 2021 lúc 17:50

undefined