Cho đa thức
a)P(x) = x^4+2x^2+1. Tính P(-1); P(1/2); P(-2); P(1)
b)Q(x) = x^4+4x^3+2x^2-4x+1. Tính Q(-1); Q(3); Q(2)
Thực hiện phép tính :
Thực hiện phép tính :
5.x^2(x-y+1)+(x^2-1)(x+y)
Bài 2:
1: \(A=\left(x+2\right)\left(x^2-2x+4\right)+2\left(x+1\right)\left(1-x\right)\)
\(=\left(x+2\right)\left(x^2-x\cdot2+2^2\right)-2\left(x+1\right)\left(x-1\right)\)
\(=x^3+2^3-2\left(x^2-1\right)\)
\(=x^3+8-2x^2+2=x^3-2x^2+10\)
\(B=\left(2x-y\right)^2-2\left(4x^2-y^2\right)+\left(2x+y\right)^2+4\left(y+2\right)\)
\(=\left(2x-y\right)^2-2\cdot\left(2x-y\right)\left(2x+y\right)+\left(2x+y\right)^2+4\left(y+2\right)\)
\(=\left(2x-y-2x-y\right)^2+4\left(y+2\right)\)
\(=\left(-2y\right)^2+4\left(y+2\right)\)
\(=4y^2+4y+8\)
2: Khi x=2 thì \(A=2^3-2\cdot2^2+10=8-8+10=10\)
3: \(B=4y^2+4y+8\)
\(=4y^2+4y+1+7\)
\(=\left(2y+1\right)^2+7>=7>0\forall y\)
=>B luôn dương với mọi y
Bài 1:
5: \(x^2\left(x-y+1\right)+\left(x^2-1\right)\left(x+y\right)\)
\(=x^3-x^2y+x^2+x^3+x^2y-x-y\)
\(=2x^3-x+x^2-y\)
6: \(\left(3x-5\right)\left(2x+11\right)-6\left(x+7\right)^2\)
\(=6x^2+33x-10x-55-6\left(x^2+14x+49\right)\)
\(=6x^2+23x-55-6x^2-84x-294\)
=-61x-349
bài 1 Cho các đa thức
A(x) =x - 5x3-2x2 +9x3-(x-1) -2x2
B(x) = -4 x3 -2(x2+1) +6x + 2x2-9x +2x3
C(x) =2x - 6x2 - 4 + x3
a) Thu gọn các đa thức trên và sắp xếp theo lũy thừa giảm dần của biến
b) Tính A(x) + B(x) - C(x)
c) Tìm nghiệm của đa thức P(x) biết P(x) =C(x) -x3+4
a: \(A=-5x^3+9x^3-2x^2-2x^2+x-x+1\)
\(=4x^3-4x^2+1\)
\(B=-4x^3+2x^3-2x^2+2x^2+6x-9x-2\)
\(=-2x^3-3x-2\)
\(C=x^3-6x^2+2x-4\)
b: \(A\left(x\right)+B\left(x\right)-C\left(x\right)\)
\(=4x^3-4x^2+1-2x^3-3x-2+x^3-6x^2+2x-4\)
\(=3x^3-10x^2-x-4\)
cho 2 đa thức
A(x)=x^5+2x^2-1/2x-3
B(X)=-x^5-3x^2+1/2x+1
a) tính M(x)=A(x)+B(x)
b) chứng tỏ M(x) ko có nghiệm
a, \(M\left(x\right)=x^5+2x^2-\dfrac{1}{2}x-3-x^5-3x^2+\dfrac{1}{2}x+1=-x^2-2\)
b, giả sử đa thức M(x) có nghiệm khi
\(M\left(x\right)=-x^2-2=0\Leftrightarrow x^2+2=0\)(vô lí)
vậy giả sử là sai hay đa thức trên ko có nghiệm
cho 2 đa thức
A(x)=x^5+2x^2-1/2x-3
B(X)=-x^5-3x^2+1/2x+1
a) tính M(x)=A(x)-B(x)
b) chứng tỏ M(x) ko có nghiệm
a) tính M(x)=A(x)-B(x)
hay a) tính M(x)=A(x)+B(x) ( mik thấy cái này hợp lí hơn
cho 2 đa thức
A(x)=x^5+2x^2-1/2x-3
B(X)=-x^5-3x^2+1/2x+1
a) tính M(x)=A(x)-B(x)
b) chứng tỏ M(x) ko có nghiệm
Sửa đề: M(x)=A(x)+B(x)
a: M(x)=x^5+2x^2-1/2x-3-x^5-3x^2+1/2x+1
=-x^2-2
b: -x^2-2<=-2<0 với mọi x
=>M(x) vô nghiệm
thu gọn đa thức
a. 3x(x-5)-(x-2)7x
b. (x+4)(x-4)-2x(3-x)
c. (3x-7)(-2x+1)-8x(6-x)
a, 3x(x-5)-(x-2)7x
= 3x2 - 15x -7x2 - 14x
= -4x2 - 29x
= -x(4x+ 29)
b,(x+4)(x+4)-2x(3-x)
= x2 - 42 - 6x + 2x2
= 3x2 - 6x - 16
c,(3x-7)(-2x+1)-8x(6-x)
= -6x2 + 3x +14x -7 - 48x + 8x2
= 2x2 - 31x - 7
Bài 3:
3: \(6x\left(x-y\right)-9y^2+9xy\)
\(=6x\left(x-y\right)+9xy-9y^2\)
\(=6x\left(x-y\right)+9y\left(x-y\right)\)
\(=\left(x-y\right)\left(6x+9y\right)\)
\(=3\left(2x+3y\right)\left(x-y\right)\)
Bài 4:
cho 2 đa thức
A(x)=x^5+2x^2-1/2x-3
B(X)=-x^5-3x^2+1/2x+1
a) chứng tỏ M(x) ko có nghiệm
M(x) là đa thức nào vậy bạn?
tìm nghiệm của đa thức
a,2x-1=0
b,4x²-16=0
c,x²-2x=0
d,(x-1).(x²-4)=0
e,x³+3x=0
f,x²+3x-4=0
a: 2x-1=0
nên 2x=1
hay x=1/2
b: 4x2-16=0
=>(x-2)(x+2)=0
=>x=2 hoặc x=-2
c: x2-2x=0
=>x(x-2)=0
=>x=0 hoặc x=2
a: 2x-1=0
nên 2x=1
hay x=1/2
b: 4x2-16=0
=>(x-2)(x+2)=0
=>x=2 hoặc x=-2
c: x2-2x=0
=>x(x-2)=0
=>x=0 hoặc x=2
a) \(2x-1=0\)
\(2x\) \(=1\)
\(x\) \(=1:2\)
\(x\) \(=\dfrac{1}{2}\)
Vậy \(x=\dfrac{1}{2}\) là nghiệm của đa thức \(2x-1\)
b) \(4x^2-16=0\)
\(4x^2\) \(=16\)
\(x^2\) \(=16:4\)
\(x^2\) \(=4\)
\(x\) \(=\overset{-}{+}\) \(2\)
Vậy \(x=-2\) hoặc \(x=2\) là nghiệm của đa thức \(4x^2-16\)
c) \(x^2-2x=0\)
\(x.x-2x=0\)
\(x.\left(x-2\right)=0\)
⇒ \(x=0\) hoặc \(x-2=0\)
⇒ \(x=0\) hoặc \(x\) \(=0+2=2\)
Vậy \(x=0\) hoặc \(x=2\) là nghiệm của đa thức \(x^2-2x\)
d) \(\left(x-1\right).\left(x^2-4\right)=0\)
\(\left(x-1\right).\left(x-2\right).\left(x+2\right)=0\)
\(\left\{{}\begin{matrix}x-1=0=0+1=1\\x-2=0=0+2=2\\x+2=0=0-2=-2\end{matrix}\right.\)
Vậy \(x=1\); \(x=2\) hoặc \(x=-2\) là nghiệm của đa thức \(\left(x-1\right).\left(x^2-4\right)\)
e) \(x^3+3x=0\)
\(x.x.x+3x=0\)
\(x.\left(x^2+3\right)=0\)
⇒ \(x=0\) hoặc \(x^2+3=0\)
⇒ \(x=0\) hoặc \(x^2\) \(=0+3\)
⇒ \(x=0\) hoặc \(x^2\) \(=3\) (Không bằng 0)
Vậy \(x=0\) là nghiệm của đa thức \(x^3+3x\)
f) \(x^2+3x-4=0\)
⇒ \(x.\left(x+1\right)+4\left(x-1\right)=0\)
⇒ \(\left(x-1\right).\left(x+4\right)=0\)
⇔\(\left[{}\begin{matrix}x-1=0=0+1=1\\x+4=0=0-4=-4\end{matrix}\right.\)
Vậy \(x=1\) và \(x=-4\) là nghiệm của đa thức \(x^2+3x-4\)
Cho đa thứcA=2x^4+3x^3-4x^2-3x+a và đa thức B = x + 2 Tìm a để đa thức A chia hết cho đa thức B