Cho tam giác ABC. D,E,F lần lượt là trung điểm của các cạnh AB, BC, AC và O là giao điểm các đường trung trực của tam giác ABC. Cho OD > OE; OE = OF. Hãy sao sánh BC và AC; AB và AC
Cho tam giác ABC, O là giao của các đường trung trực của tam giác; D, E, F theo thứ tự là trung điểm của các cạnh AB, BC, AC. Cho biết OD > OE, OE = OF (h.69).
Hãy so sánh các độ dài:
BC và AC;
O là giao điểm của 3 đường trung trực của tam giác ABC
⇒ O là tâm đường tròn ngoại tiếp tam giác ABC
OE = OF ⇒ AC = BC
Cho tam giác ABC, O là giao của các đường trung trực của tam giác; D, E, F theo thứ tự là trung điểm của các cạnh AB, BC, AC. Cho biết OD > OE, OE = OF (h.69).
Hãy so sánh các độ dài:
AB và AC
O là giao điểm của 3 đường trung trực của tam giác ABC
⇒ O là tâm đường tròn ngoại tiếp tam giác ABC
OD > OE ⇒ AB < AC
Cho tam giác ABC, O là giao của các đường trung trực của tam giác; D, E, F theo thứ tự là trung điểm của các cạnh AB, BC, AC. Cho biết OD > OE, OE = OF (h.69).
Hãy so sánh các độ dài:
a) BC và AC;
b) AB và AC.
O là giao điểm của 3 đường trung trực của tam giác ABC
⇒ O là tâm đường tròn ngoại tiếp tam giác ABC
a) OE = OF ⇒ AC = BC
b) OD > OE ⇒ AB < AC
1)CHO TG ABC VUÔNG TẠI A.VẼ AH VUÔNG VỚI BC TẠI H.TIA PHÂN GIÁC GÓC HAB CẮT BC TẠI D.TIA PHÂN GIÁC GÓC HAC CẮT BC TẠI E.
CM: GIAO ĐIỂM CÁC ĐƯỜNG PHÂN GIÁC CỦA TAM GIÁC ABC LÀ GIAO ĐIỂM CÁC ĐƯỜNG TRUNG TRỰC CỦA TAM GIÁC ADE.
2)CHO TAM GIÁC ABC CÓ AC>AB.TRÊN CA LẤY E SAO CHO CE=AB.CÁC ĐƯỜNG TRUNG TRỰC CỦA BE VÀ AC CẮT NHAU TẠI O.
CM:A)TAM GIÁC AOB=TAM GIÁC AOC
B)AO LÀ TIA PHÂN GIÁC CỦA GÓC BAC
3)CHO TAM GIÁC ABC ĐỀU.TRÊN AB,BC,AC LẤY CÁC ĐIỂM D,E,F SAO CHO AD=BE=CF.
CM:A)TAM GIÁC DEF ĐỀU.
B)GỌI O LÀ GIAO ĐIỂM CÁC ĐƯỜNG TRUNG TRỰC CỦA TAM GIÁC ABC.CM:Ó CŨNG LÀ GIAO ĐIỂM CÁC ĐƯỜNG TRUNG TRỰC CỦA TAM GIÁC DEF
mau lên giùm mình đê các bạn ơi.mau,mau đê
Cho tam giác ABC (AB < AC < BC), đường cao AH. Gọi D, E, F lần lượt là trung điểm của các cạnh AB, BC và AC. Gọi I là giao điểm của DF và AE.
b) Chứng I là trung điểm của DF.
b) Ta có DF // BC (cmt) hay DI // BE; D là trung điểm của AD ⇒ I là trung điểm của AE và DI = BE/2
Trong ΔAEC có IF là đường trung bình nên IF = EC/2 mà EC = EB (gt) ⇒ IF = ID hay I là trung điểm của DF.
Cho tam giác nhọn ABC, AD là đường cao. Vẽ các điểm M, N sao cho AB là trung trực của DM, AC là trung trực của DN. Gọi E, F lần lượt là giao điểm của MN với AC, AB. CMR: a) Tam giác AMN cân b) DE+EF+DF=MN c) DA là phân giác góc EDF d) Giao điểm các đường phân giác của tam giác DEF và trực tâm tam giác ABC trùng nhau
tự kẻ hình nha:333
a) vì AB là trung trực của DM=> MH=HD( đặt H là giao điểm của AB và DM)
xét tam giác MAB và tam giác DAB có
MH=HD(cmt)
AHM=AHD(=90 độ)
AH chung
=> tam giác MAB= tam giác DAB(cgc)
=> AM=AD( hai cạnh tương ứng)
vì AC là trung trực của DN=> NK=DK( đặt K là giao điểm của AC và DN)
xét tam giác AKD và tam giác AKN có
DK=NK(cmt)
AKD=AKN(=90 độ)
AK chung
=> tam giác AKD= tam giác AKN( cgc)
=> AN=AD ( hai cạnh tương ứng)
AM=AD(cmt)
=> AM=AN=> tam giác AMN cân A
b) vì E thuộc đường trung trực AB=> EM=ED
vì F thuộc đường trung trực AC=> FD=FN
ta có MN=ME+EF+FN mà EM=ED, FD=FN
=> MN= ED+EF+FD
c) xét tam giác ADF và tam giác ANF có
FD=FN(cmt)
AD=AN(cmt)
AF chung
=> tam giác ADF= tam giác ANF(ccc)
=> ANF=ADF( hai góc tương ứng)
xét tam giác AME và tam giác ADE có
AM=AD(cmt)
AE chung
EM=ED(cmt)
=> tam giác AME= tam giác ADE(ccc)
=> AME=ADE( hai góc tương ứng)
mà AME=ANF( tam giác AMN cân A)
=> ADE=ADF=> AD là p/g của EDF
d) chưa nghĩ đc :)))))))
CHUẨN R BN ƠI HỌC THÌ NGU MÀ CHƠI NGU THÌ GIỎI
Cho tam giác ABC đều. Trên các cạnh AB, BC, AC lấy 3 điểm theo thứ tự D, E, F sao cho AD=BE=CF
a) CMR tam giác DEF đều
b) Gọi O là giao điểm các dường trung trưc của tam giác ABC. CMR O cũng là giao điểm các đường trung trực của tam giác DEF
cho t/g ABC có AB=BC Trên các cạnh AB, AC lấy lần lượt các điểm D và E sao cho AD=AE
Gọi O là giao điểm của BE và CD. Chứng minh rằng:
a,tam giác abe=acd
b,od=oe,ob=oc
cho t/g ABC có AB=BC Trên các cạnh AB, AC lấy lần lượt các điểm D và E sao cho AD=AE
Gọi O là giao điểm của BE và CD. Chứng minh rằng:
a,tam giác abe=acd
b,od=oe,ob=oc
a: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{A}\) chung
AE=AD
Do đó: ΔABE=ΔACD