Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Phan Ngọc Tú
Xem chi tiết
Hoàng Lê Bảo Ngọc
15 tháng 10 2016 lúc 11:48

A B C D F E M

Xét tam giác vuông là tam giác BEC và tam giác DCF có CD = BC , BE = CF = 1/2a

=> Tam giác BEC = tam giác DCF (hai cạnh góc vuông)

=> góc CDF = góc BCE mà góc CDF + góc DFC = 90 độ

=> góc ECF + góc DFC = 90 độ hay góc DMC = 90 độ => CE vuông góc DF

Ta chứng minh được tam giác MDC đồng dạng tam giác CDF (g.g)

Áp dụng định lí Pytago có \(DF=\sqrt{CD^2+FC^2}=\sqrt{a^2+\frac{a^2}{4}}=\frac{a\sqrt{5}}{2}\)

\(S_{CDF}=\frac{1}{2}CD.CF=\frac{1}{2}a.\left(\frac{a}{2}\right)=\frac{a^2}{4}\)

Suy ra \(\frac{S_{MDC}}{S_{CDF}}=\left(\frac{CD}{DF}\right)^2=\left(\frac{a}{\frac{a\sqrt{5}}{2}}\right)^2=\left(\frac{2}{\sqrt{5}}\right)^2=\frac{4}{5}\)

\(\Rightarrow S_{MDC}=\frac{4}{5}S_{CDF}=\frac{4}{5}.\frac{a^2}{4}=\frac{a^2}{5}\)

hoang phuc
15 tháng 10 2016 lúc 11:04

chiu

tk nhe

xin do

bye

Nguyễn Thu Giang
Xem chi tiết
Nguyễn thị thu Hương
Xem chi tiết
Trương Nguyễn Ngọc Như
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 1 2023 lúc 8:06

a: Xét tứ giác BECF có

D là trung điểm chung của BC và EF

BE=EC

Do đó: BECF là hình thoi

b: Sửa đề: Tính diện tích BECF

\(BC=\sqrt{10^2-8^2}=6\left(cm\right)\)

DE=AB/2=4cm

=>EF=8cm

\(S_{BECF}=\dfrac{1}{2}\cdot6\cdot8=3\cdot8=24\left(cm^2\right)\)

Tran Thanh Huyen
Xem chi tiết
Ngân Vũ
31 tháng 3 2016 lúc 20:23

bài của bạn gần giống bài của mình

Trần Sỹ Hùng
13 tháng 11 2018 lúc 20:32

ghen j đồng bào

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 10 2018 lúc 16:54

Tìm ảnh của từng điểm qua phép đối xứng trục AC: điểm I biến thành I; B thành D; G thành H.

Chọn đáp án C

nc đình đình
Xem chi tiết
Nguyễn Ngọc Anh Minh
11 tháng 1 2022 lúc 15:44

A B C E F H I M G N P Q K

Gọi P là giao của BN với EH; Q là giao của MN với HF; K là giao của MN với EF

Ta có 

\(EH\perp BC;AI\perp BC\)=> EH//AI \(\Rightarrow\frac{PE}{NA}=\frac{PH}{NI}\) (Talet) \(\Rightarrow\frac{PE}{PH}=\frac{NA}{NI}=1\Rightarrow PE=PH\)

=> BN đi qua trung điểm P của EH

Ta có

EF//BC (gt) => KF//HM \(\Rightarrow\frac{QK}{QM}=\frac{QF}{QH}=\frac{KF}{HM}\) (Talet) => KH//FM

Xét tứ giác KFMH có 

KF//HM; KH//FM => KFMH là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

=> KF=HM (Trong hình bình hành các cạnh đối bằng nhau)

\(\Rightarrow\frac{QF}{QH}=\frac{KF}{HM}=1\Rightarrow QF=QH\)

=> MN đi qua trung điểm Q của HF

Khách vãng lai đã xóa
Do Gia Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 12 2017 lúc 13:51

Vũ Thị Hồng Vân
Xem chi tiết