Bài 6: Cho tam giác ABC; Gọi M, N, P lần lượt là trung điểm của ba cạnh AB, AC, BC. Gọi I
là giao điểm của AP và MN. C/m: a) IA = IP b) IM = IN
giúp minhhf,cần gấpppppppppppppp.
Bài 5: Cho tam giác ABC , biết AB/AC = 2/3 , đường cao AH = 6 cm. Tính chu vi tam giác ABC?
`(AB)/(AC)=2/3 = (2x)/(3x) (x >0)`
Áp dụng hệ thức lượng trong tam giác vuông:
`1/(AH^2)=1/(AB^2)+1/(AC^2)`
`<=>1/(6^2)=1/(4x^2)+1/(9x^2)`
`<=> x=\sqrt13`
`=> AB=2\sqrt13 (cm) ; AC=3\sqrt13 (cm)`
Áp dụng định lí Pytago:
`AB^2+AC^2=BC^2`
`=> BC=13(cm)`
`=>` Chu vi là: `13+5\sqrt13 (cm)`.
Bài 6: Cho tam giác ABC vuông cân tại A, về phía ngoài tam giác ABC ta dựng tam giác
BCD vuông cân tại B. Tứ giác ABDC là hình gì ? Vì sao ?
Ta có: \(\widehat{DCB}=\widehat{CBA}\left(=45^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CD
Xét tứ giác ABDC có DC//BA
nên ABDC là hình thang
mà \(\widehat{CAB}=90^0\)
nên ABDC là hình thang vuông
Bài 4: a) Cho tam giác ABC = tam giác DEF . Biết A = 32 độ , F = 72 độ Tính các góc còn lại của mỗi tam giác. b) Cho tam giác ABC = tam giác DEF. Tính chu vi của mỗi tam giác biết rằng AB = 6 cm, AC = 8 cm, EF = 10cm
Bài 5: Một tam giác có số đo các góc bằng nhau. Tính các góc đó
A. 40° B. 50° C. 49° D. 60°
Bài 6: Cho hai tam giác ABC và tam giác MNP có ∠A = ∠M, ∠B = ∠N. Cần điều kiện gì để hai tam giác ABC và tam giác MNP bằng nhau theo trường hợp góc - cạnh – góc?
A. AC = MP B. AB = MN C. BC = NP D. AC = MN
Bài 1: Cho một tam giác vuông có độ dài hai cạnh góc vuông tỉ lệ 6:8. Biết cạnh huyền dài 55 cm. Hãy tính độ dài hai cạnh góc vuông
Bài 2: Cho tam giác vuông ABC đường vuông góc hạ từ A xuống BC là AH. Biết AH= 6 cm, BH= 4,5 cm, HC= 8 cm.Hỏi tam giác ABC là tam giác gì?.
Bài 2:Cho tam giác ABC có AB=6,AC=8,A=120 độ.Tính cạnh BC và số đo các góc còn lại của tam giác ABC
\(BC=AB^2+AC^2-2\cdot AB\cdot AC\cdot\cos A=148\left(cm\right)\)
Bài 6 : cho 2 tam giác = nhau : tam giác ABC và 1 tam giác có 3 đỉnh là M,N,P . Hãy viết kí hiệu về sự bằng nhau giữa 2 tam giác trong mỗi trường hợp sau
a, A= N , B=M
b, AB=PN,BC=NM
Bài 7 :Cho 2 mảnh đất hình tam giác = nhau , tam giác ABC = tam giác KMN . Tính chu vi mỗi mảnh đất biết AB= 12m , BC=m , MN = 20m
Bài 8 : ( Chứng minh 2 tam giác bằng nhau ) Cho tam giác ABC biết AB=MN=6m,BC=KM =4m , 2 tam giác có cùng chu vi là 15m . Biết góc A = 55 độ , M = 41 độ. Chứng minh 2 tam giác bằng nhau .( Chỉ ra các yếu tố = nhau)
Các bạn giúp mình nha , ngày mai mình cần gấp làm chính xác cho mình nha . CẢM ƠN NHIỀU .
Bài 1: Cho tam giác ABC cân tại A có góc ở đáy bằng 50˚, lấy điểm K nằm trong tam giác sao cho góc KBC=10˚, góc KCB = 30˚. Tính số đo các góc tam giác ABK ?
Bài 2: Trong hình vuông ABCD lấy điểm M sao cho góc MAB = 60˚, góc MCD = 15˚. Tính góc MBC ?
Bài 3: Cho tam giác có góc ABC = 70˚, góc ACB = 50˚, trên cạnh AB lấy M sao cho góc MCB = 40˚, trên cạnh AC lấy điểm N sao cho góc NBC = 50˚. Hãy tính góc NMC ?
Bài 4: Cho tam giác ABC cân tại A, dựng trung tuyến AM và phân giác AD, tính các góc của tam giác ABC biết BD = 2AM
Bài 5: Cho tam giác ABC có góc ABC = 45˚, góc ACB = 120˚, trên tia đối tia CB lấy điểm D sao cho CD = 2CB. Tính góc ADB ?
Bài 6: Tam giác ABC cân tại A có góc A = 20˚, các điểm M,N theo thứ tự thuộc các cạnh AB, AC sao cho góc BCM = 50˚, góc CBN = 60˚. Tính góc MNA ?
bài 6:Cho tam giác ABC,đường phân giác AD.Tính tỉ số diện tích các tam giác ADB,ADC.Rút ra nhận xét về tỉ số diện tích của 2 tam giác này.
Kẻ AH⊥BC tại H
Xét ΔABD có
AH là đường cao ứng với cạnh BD(AH⊥BC, D∈BC)
nên \(S_{ABD}=\dfrac{AH\cdot BD}{2}\)
Xét ΔACD có
AH là đường cao ứng với cạnh CD(AH⊥BC, D∈BC)
nên \(S_{ACD}=\dfrac{AH\cdot CD}{2}\)
Ta có: \(\dfrac{S_{ABD}}{S_{ACD}}=\dfrac{AH\cdot BD}{2}:\dfrac{AH\cdot CD}{2}\)
\(\Leftrightarrow\dfrac{S_{ABD}}{S_{ACD}}=\dfrac{AH\cdot BD}{2}\cdot\dfrac{2}{AH\cdot CD}=\dfrac{BD}{CD}\)(1)
Xét ΔABC có
AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)(2)
Từ (1) và (2) suy ra \(\dfrac{S_{ADB}}{S_{ADC}}=\dfrac{AB}{AC}\)
Vậy: Tỉ số diện tích của hai tam giác này bằng tỉ số giữa hai cạnh kề hai đoạn thẳng được tạo bởi tia phân giác kẻ xuống cạnh tương ứng
bài 1 chô tam giác ABCD có M thuộc AB , N thuộc AC biết AB=8 AC=6 BC=10 AM=4 MN=5 chứng minh
a) tam giác AMN đồng dạng tam giác ABC
b) tìm tỉ số đồng dạng
bài 2 cho tam giác ABC đồng dạng tam giác DEF theo tỉ số đồng dạng k1/2 biết AB= 6; AC =8; EF= 20
a, tính chu vi của 2 tam giác
b, cho AD là phân giác góc A tính BD, CD
mik cần gấp mn giúp mik với
Câu 2:
a: Vì ΔABC~ΔDEF theo tỉ số đồng dạng là \(k=\dfrac{1}{2}\)
nên \(\dfrac{AB}{DE}=\dfrac{AC}{DF}=\dfrac{BC}{EF}=k=\dfrac{1}{2}\)
=>\(\dfrac{6}{DE}=\dfrac{8}{DF}=\dfrac{BC}{20}=\dfrac{1}{2}\)
=>\(DE=6\cdot2=12;DF=8\cdot2=16;BC=\dfrac{20}{2}=10\)
Chu vi tam giác ABC là:
10+6+8=24
Chu vi tam giác DEF là:
12+16+20=48
b: Xét ΔABC có AD là phân giác
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
=>\(\dfrac{BD}{6}=\dfrac{CD}{8}\)
=>\(\dfrac{BD}{3}=\dfrac{CD}{4}\)
mà BD+CD=BC=10
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)
=>\(BD=3\cdot\dfrac{10}{7}=\dfrac{30}{7};CD=4\cdot\dfrac{10}{7}=\dfrac{40}{7}\)