Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngô Trà My
Xem chi tiết
Trần Ái Linh
20 tháng 7 2021 lúc 14:17

`(AB)/(AC)=2/3 = (2x)/(3x) (x >0)`

Áp dụng hệ thức lượng trong tam giác vuông:

`1/(AH^2)=1/(AB^2)+1/(AC^2)`

`<=>1/(6^2)=1/(4x^2)+1/(9x^2)`

`<=> x=\sqrt13`

`=> AB=2\sqrt13 (cm) ; AC=3\sqrt13 (cm)`

Áp dụng định lí Pytago:

`AB^2+AC^2=BC^2`

`=> BC=13(cm)`

`=>` Chu vi là: `13+5\sqrt13 (cm)`.

goku
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 9 2021 lúc 22:23

Ta có: \(\widehat{DCB}=\widehat{CBA}\left(=45^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CD

Xét tứ giác ABDC có DC//BA

nên ABDC là hình thang

mà \(\widehat{CAB}=90^0\)

nên ABDC là hình thang vuông

Thu Anh
Xem chi tiết
Tt_Cindy_tT
Xem chi tiết
Đào Mạnh Hưng
1 tháng 5 2022 lúc 13:22

5a

6d

Đào Mạnh Hưng
1 tháng 5 2022 lúc 13:22

nhớ k đấy 

Khanh Pham
1 tháng 5 2022 lúc 13:24

5D

6B

Lê Thu Huyền
Xem chi tiết
tuấn trần
Xem chi tiết
tuấn trần
20 tháng 1 2022 lúc 5:13

Giải hộ mình câu toán,mình cần gấp

Nguyễn Lê Phước Thịnh
20 tháng 1 2022 lúc 8:31

\(BC=AB^2+AC^2-2\cdot AB\cdot AC\cdot\cos A=148\left(cm\right)\)

Binh pham
Xem chi tiết
Trần Thị Ngọc Như
Xem chi tiết
Trần Hương
8 tháng 1 2016 lúc 21:22

dang tung bai di ban 

nhin thay ngai qua

nam ngo bao
30 tháng 10 2024 lúc 19:39

Không làm mà đòi có ăn

 

Chóii Changg
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 2 2021 lúc 19:36

Kẻ AH⊥BC tại H

Xét ΔABD có 

AH là đường cao ứng với cạnh BD(AH⊥BC, D∈BC)

nên \(S_{ABD}=\dfrac{AH\cdot BD}{2}\)

Xét ΔACD có

AH là đường cao ứng với cạnh CD(AH⊥BC, D∈BC)

nên \(S_{ACD}=\dfrac{AH\cdot CD}{2}\)

Ta có: \(\dfrac{S_{ABD}}{S_{ACD}}=\dfrac{AH\cdot BD}{2}:\dfrac{AH\cdot CD}{2}\)

\(\Leftrightarrow\dfrac{S_{ABD}}{S_{ACD}}=\dfrac{AH\cdot BD}{2}\cdot\dfrac{2}{AH\cdot CD}=\dfrac{BD}{CD}\)(1)

Xét ΔABC có

AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)(2)

Từ (1) và (2) suy ra \(\dfrac{S_{ADB}}{S_{ADC}}=\dfrac{AB}{AC}\)

Vậy: Tỉ số diện tích của hai tam giác này bằng tỉ số giữa hai cạnh kề hai đoạn thẳng được tạo bởi tia phân giác kẻ xuống cạnh tương ứng

ngọc quỳnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 2 2024 lúc 9:20

Câu 2:

a: Vì ΔABC~ΔDEF theo tỉ số đồng dạng là \(k=\dfrac{1}{2}\)

nên \(\dfrac{AB}{DE}=\dfrac{AC}{DF}=\dfrac{BC}{EF}=k=\dfrac{1}{2}\)

=>\(\dfrac{6}{DE}=\dfrac{8}{DF}=\dfrac{BC}{20}=\dfrac{1}{2}\)

=>\(DE=6\cdot2=12;DF=8\cdot2=16;BC=\dfrac{20}{2}=10\)

Chu vi tam giác ABC là:

10+6+8=24

Chu vi tam giác DEF là:

12+16+20=48

b: Xét ΔABC có AD là phân giác

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

=>\(\dfrac{BD}{6}=\dfrac{CD}{8}\)

=>\(\dfrac{BD}{3}=\dfrac{CD}{4}\)

mà BD+CD=BC=10

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)

=>\(BD=3\cdot\dfrac{10}{7}=\dfrac{30}{7};CD=4\cdot\dfrac{10}{7}=\dfrac{40}{7}\)