Cho tam giác ABC vuông tại B, có đường trung tuyến BM. Gọi D là 1 điểm bất kì thuộc cạnh AC. Kẻ AH; Ck vuông góc với BD. C/m
a) BH=CK
b)Tam giác MHK cân
c) Gọi I là giao điểm của BM và CK. Chứng minh tg MID cân
Cho tam giác ABC vuông cân tại B, có trung tuyến BM. Gọi D là một điểm bất kì thuộc cạnh AC. Kẻ AH, CK vuông góc với BD (H, K thuộc đường thẳng BD). Chứng minh : a) BH = CK. b) Tam giác MHK vuông cân.
xin lỗi tôi ko biết
ai mik lại
ai duyệt mình duyệt lại
ai đúng mình dừng lại
chon a,b,c
Cho tam giác ABC vuông cân tại B có trung tuyến BM. Gọi D là 1 điiểm bất kì thuộc cạnh AC. Kẻ AH,CK vuông góc BD ( H, K thuộc đường thẳng BD)
Chứng minh a) BH=CK
b) tam giác MHK vuông cân
cho tam giác ABC vuông cân tại A, có trung tuyến BM. Gọi D là điểm bất kì thuộc cạnh AC. kẻ AH, CK vuông góc với BD( H,K thuộc BD). Chứng minh:
a) BH=CK
b)tam giác MHK vuông cân
Hình hơi lệch mọi người thông cảm
Cho tam giác ABC vuông cân tại B, có trung tuyến BM. Gọi D là 1 điểm bất kì thuộc AC. Kẻ AH, CK vuông góc với BD.C/M:
a/ BH = CK
b/ Tam giác MHK vuông cân
a) xét 2 tg vuông BHA và CKB
có : BA = BC và
kéo dài CK cắt AB tại I ta có : g IBK = 90 - g BIK ( do tg IBK vuông tại K )
đồng thời tg IBC vuông tại B => g BCK = 90 - g BIK
==> g IBK = g BCK
nên tg BHA = tg CKB ==> HB = CK
b )
M là trung điểm của AC => BM vuông góc AC ( t/c tg cân )
tg AMB vuông tại M có g MAB = 45 độ nên vuông cân
=> MA = MB
tg MKB = tg MHB do có
MB = MA và BK = AH ( c/m a ) đồng thời
g MBK = g MAH ( cùng phụ với 2 góc đối đỉnh ở D )
==> MK = MH
g HMK = g HMA + AMK mà gHMK = g KMB ( do 2 tg bàng nhau vừa c/m )
nên g HMK = g KMB + g AMK = g AMB = 90 độ
==> MHK vuông cân
c) ta có
đường vuông góc CK < đường xiên CD => CK lớn nhất khi K trùng với D , lúc đó CK = CD
tuơng tự AH lớn nhất khi H trùng với D , lúc đó AH = AD
=> tổng lớn nhất khi khi K, H , D trùng nhau
==> g MAH = 0 độ ( do D thuộc AC)
nhưng theo c/m b
g MAH = g MBK ==> g MBK = 0 độ
==> g MBD = 0 độ nên D trùng với M
kết luận : để tổng lớn nhất thì nằm ngay vị trí của điểm M
lúc đó AH + CK = AC
Cho tam giác ABC vuông cân tại B. Có trung tuyến BM. Gọi D là một điểm bất kì thuộc cạnh AC. Kẻ xAH, CK vuông góc với BD (H,K thuộc đường thẳng BD). Chứng minh:
a) BH=CK
b) Tam giác MHK vuông cân
cho tam giác ABC vuông tại A ; AH vuông góc BC; M là điểm bất kì trên BC kẻ MD vuông góc AB(D thuộc AB ); ME vuông góc AC (E thuộc AC) gọi I là trung điểm DE hãy chứng minh I nằm trên đường trung trực của AH
Câu 4. (3,0 điểm) Cho tam giác ABC vuông tại A có 2 cạnh AB = AC. Gọi M là trung điểm của cạnh BC. Lấy một điểm D bất kì thuộc cạnh BC. Qua B và C, kẻ hai đường vuông góc với cạnh AD, lần lượt cắt AD tại H và K . Gọi I là giao điểm của AM và CK.
a) Chứng minh BH = AK ;
b) Chứng minh DI L AC ;
c) Chứng minh KM là đường phân giác của HKC.
a: Xet ΔBHA vuông tại H và ΔCKA vuông tại K có
BA=CA
góc BAH=góc CAK
=>ΔBHA=ΔCKA
=>BH=CK
b: Xét ΔDAC có
AM,CK là đường cao
AM căt CK tại I
=>I là trực tâm
=>DI vuông góc AC
cho tam giác ABC vuông cân tại B . Trung tuyến BM. D là điểm bất kỳ thuộc cạnh AC. Kẻ AH vuông góc BD. (H,K thuộc BD)
CHỨNG MINH: A, BH=CK
B,Tam giác MHK vuông cân
Bài giải
a) Xét 2 tg vuông BHA và CKB
có : BA = BC và
kéo dài CK cắt AB tại I ta có : g IBK = 90 - g BIK ( do tg IBK vuông tại K )
đồng thời tg IBC vuông tại B => g BCK = 90 - g BIK
==> g IBK = g BCK
nên tam giác BHA = tg CKB ==> BH = CK
b )
M là trung điểm của AC => BM vuông góc AC ( t/c tg cân )
tg AMB vuông tại M có g MAB = 45 độ nên vuông cân
=> MA = MB
tg MKB = tg MHB do có
MB = MA và BK = AH ( c/m a ) đồng thời
g MBK = g MAH ( cùng phụ với 2 góc đối đỉnh ở D )
==> MK = MH
g HMK = g HMA + AMK mà gHMK = g KMB ( do 2 tg bàng nhau vừa c/m )
nên g HMK = g KMB + g AMK = g AMB = 90 độ
==> MHK vuông cân
bạn n siêu phàm xét sai tg MAH và MBK bạn viết lộn nhưng cách làm đúng