Tìm a,b thuộc N , biết
a-b=36 và BCNN =216
a+b=39; BCNN=120
Tìm hai số a,b ϵ N, biết
a) ƯCLN(a, b) + BCNN(a, b) = 19
b) BCNN(a, b) - ƯCLN( a, b) = 5
c) BCNN(a, b) - ƯCLN(a, b) = 35
Lời giải:
a. Gọi $d=ƯCLN(a,b)$. Khi đó, đặt $a=dx, b=dy$ với $x,y$ là số tự nhiên, $x,y$ nguyên tố cùng nhau.
Khi đó: $BCNN(a,b)=dxy$
Theo bài ra: $d+dxy=19$
$\Rightarrow d(1+xy)=19$
Do $d, 1+xy$ đều là số tự nhiên nên có 2 TH xảy ra:
TH1: $d=1, 1+xy=19\Rightarrow d=1, xy=18$
Do $ƯCLN(x,y)=1$ nên $(x,y)=(1,18), (2,9), (9,2), (18,1)$
$\Rightarrow (a,b)=(dx, dy) +(1,18), (2,9), (9,2), (18,1)$
b,c bạn làm tương tự theo hướng của câu a nhé.
Tìm tất cả các ước chung của 3n +1 và 5n+2 n thuộc N
TÌM 2 số tự nhiên a,b biết ƯCLN (a,b)=6 và BCNN(a,b)=36
Câu 1 :tìm phân số a/b bằng phân số 42/66, biết rằng ucln(a;b ) = 36 ?
Câu 2: tìm a;b thuộc N biết ucln ( a,b )=12 và bcnn(a, b ) =360 ?
Câu 1 : \(\frac{a}{b}=\frac{42}{66}=\frac{7}{11}\Rightarrow a=7k;b=11k\) với \(k\in\) N*
ƯCLN(a ; b) = 36 => ƯCLN(7k ; 11k) = 36. Mà 7 và 11 nguyên tố cùng nhau nên k = 36
Vậy a = 36 x 7 = 252 ; b = 396.
Phân số phải tìm là \(\frac{252}{396}\)
Tìm a , b thuộc N biết :
BCNN ( a, b ) + ƯCLN ( a , b ) = 39
Tìm a,b thuộc N, biết : a/b=20/39 và ƯCLN(a,b) = 36
Bài 1 : tìm x thuộc N
a) x - { x - [( -x + 1 )]}
b) ( x + 5 ) . ( x -2 ) < 0
Bài 2 :
Tìm x, y thuộc Z
a ) ( x+1).(xy-1)
b) 3x + 4y - xy =15
Bài 3 : Tìm x,y,z thuộc N : 26^x= 25^y = 26^z
Bài 4 : x-y=2011
y - z = -2012
z + x = 2013
Bài 5 :
tìm phân số bằng phân số 20/39 pít UWCLN của tử và mẫu của phân số đó là 36
Bài 6 :
Tìm a,b thuộc N biết :
BCNN ( a,b) = 180
UWCln ( a,b ) 12
Bài 7:
tìm a,b biết :
UwCLN ( a,b)+ BCNN ( a,b) =23
Bài 8 :
tìm x, y thuộc N*: y+1 chia hết cho x
x + 1 chia hết cho y
bài 1 :
a) x - {x-[(-x-1)]} = 1
=> x -{x -[2x-1]} =1
=> x - {x-2x+1} =1
=> x - ( -1+1)=1
=> x+x-1 = 1
=> 2x = 2
=> x =1
vậy x = 1
b) ( x+5).(x-2)<0
=> x+5 và x-2 là 2 thừa số trái dấu
mà x-2 < x+5
=> x-2 âm => x<2
x+5 dương=> x > -5
=> -5 < x<2
vậy ....
Bài 2 :
( x+1).(xy-1) = 3
vì x,y thuộc Z => x+1 thuộc Z , xy-1 thuộc Z
=> x + 1 avf xy -1 là các ước nguyên của 3
từ đó tìm được các giá trị
+ nếu x = -2 => y=1
+ nếu x = 2 => y =1
+ nếu x = -4 => y =0
b) 3x+4y-xy =15
x.(3-y)+4y = 15 x.(3-y)=15-4y
x.(3-y)=12-4y+3
x.(3-y) = 4.(3-y)+3
x.(3-y)-4.(3-y)=3
vì x,y thuộc Z => 3-y thuộc Z , x-4 thuộc Z
=> 3-y và x-4 là các ước nguyễn của 3
=>.....
ta tìm được các giá trị của x và y
Bài 3:
nếu x = 0 thì 26^x = 1 khác 25^y + 24^z với mọi y, z thuộc N, loại
=> x lớn hơn hoặc = 1
=> 26^x chẵn
mà 25^y lẻ với mọi y thuộc N
=> 24^7 lẻ => z =0
ta có 26^x = 25^y + 1
với x = y+ 1 thì 26 = 25 +1 , đúng
với x > 1, y > 1 thì 26^x có 2 c/s t/c là 76
=> 26^x chia hết cho 4
25^y có 2 c/s t/c là 25 => 25^y chia 4 dư 1
=> 25 ^y + 1 chia 4 dư 2
=> 26^x khác 25^y + 1 , loại
Bài 4:
ta công tất cả các ( x-y)+(y-x)+(z+x) = 2012
đó là 2 lần x => x= 1006
rùi thay
ta có đ/s :
z =1007
y = -1005
Bài 5 :
do 20/39 là phân số tối giản
có UWCLN ( 20,39 ) =1
mà phân số cần tìm UWCLN của tử và mẫu là 36
=> phân số cần tìm là :
20.36/39.36
= 720.1404
Đ/S: 720/1404
Bài 6 :
vì UWClN ( a,b) = 12 => a =12 m, b =12n
( m,n ) =1
BCNN ( a,b ) =12 .m.n =180
=> m.n = 15
do vai trò a,b bình đẳng, giải sử a lớn hơn hoặc bằng b
=> m lớn hơn hoặc bằng n
mà ( m,n ) =1 => m =15, n= 1
hoặc m =5, n =3
vậy vs a =180=> b=12
vs a = 60 => b =36
Bài 7 :
gọi UWCLN ( a,b ) = d ( d thuộc N*)
=> a = d .m, b = d . n
( m,n)=1
BCNN ( a,b) = d . m. n
mà UWCLN (a,b )+ BCNN (a,b ) = 23
=> d + dmn = 23
=> d .( 1+mn) =23
........ v.v
tử từng t/h
Đ/S : vs m = 2 2 => n=1 hoặc m=11, n=2
vs a = 22 => b =1 hoặc a =11 => b = 2
Bài 7:Đ/s : x=1,y=1
x=3, y=2
x=1,y=2
x=2,y=3
x=2,y=1
Tìm hai số a,b ∈ N* , biết a+2b = 36 và
ƯCLN(a,b) + 3 . BCNN(a,b) = 93
Lời giải:
Gọi $d$ là ƯCLN của $a,b$. ($d$ là số tự nhiên)
Khi đó, đặt $a=dx, b=dy$ với $x,y$ là số tự nhiên thì $(x,y)$ nguyên tố cùng nhau.
BCNN$(a,b)=dxy$
Theo bài ra ta có: \(\left\{\begin{matrix} dx+2dy=36\\ d+3dxy=93\end{matrix}\right.(*)\) hay \(\left\{\begin{matrix} d(x+2y)=36\\ d(1+3xy)=93\end{matrix}\right.\)
Do đó $d$ là ƯC của $36$ và $93$. Ta cũng có $d=93-3dxy$ chia hết cho $3$.
Do đó $d=3$
Thay vào $(*)$ thì: $x+2y=12$ và $xy=10$ nên $x=2; y=5$ hoặc $x=10; y=1$
$\Rightarrow (a,b)=(6,15)$ hoặc $(30,3)$
tìm phân số a/b biết:
a, a/b=3/20 và BCNN[a,b]=360
b, a/b=26/39 và UCLN[a,b]=36
hộ mình nha mình cần gấp
1.Tìm a,b thuộc N*.Biết a + b = 224 và UCLN của a,b là 56
2.Chứng tỏ 2n + 1 và 2n + 3 là 2 số nguyên tố cùng nhau với n thuộc N
3. Tìm a,b thuộc N biết a.b = 2400 và BCNN của a,b là 120
4. Cho a chia hết cho b BCNN của a,b là 18 . Tìm a,b
1) Coi a< b
ƯCLN (a;b) = 56 . Đặt a = 56m; b = 56n (m; n nguyên tố cùng nhau và m < n)
a + b = 224 => 56m + 56n = 224 => m + n = 4 => m = 1; n =3 => a = 56 và b = 168
Vậy...
2) Gọi d = ƯCLN(2n + 2; 2n+ 3)
=> 2n + 1 chia hết cho d; 2n +3 chia hết cho d
=> 2n + 3 - (2n + 1) chia hết cho d => 2 chia hết cho d => d = 1 hoặc d = 2
Mà 2n + 1 lẻ nên 2n + 1 không chia hết cho 2 => d = 1
Vậy...
3) Áp dụng công thức ƯCLN(a;b) . BCNN(a;b) = a.b => ƯCLN(a;b) = 2400 : 120 = 20
Đặt a = 20m; b= 20n( m; n nguyên tố cùng nhau; coi m< n)
a.b = 20m.20n = 400mn = 2400 => m.n = 6 = 1.6 = 2.3
+) m = 1; n = 6 => a = 20; b = 120
+) m = 2; n = 3 => a = 40; b = 60
Vây,...
4) a chia hết cho b nên BCNN(a;b) = a = 18
=> b \(\in\)Ư(18) = {1;2;3;6;9;18}
vậy,,,