Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bbanhr
Xem chi tiết
thi nhi Nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 4 2021 lúc 22:40

a) Xét ΔAHB vuông tại H và ΔAHC vuông tại H có 

AB=AC(ΔBAC cân tại A)

AH chung

Do đó: ΔAHB=ΔAHC(cạnh huyền-cạnh góc vuông)

Suy ra: BH=HC(hai cạnh tương ứng)

Hoàng Sơn
Xem chi tiết
XiangLin Linh
Xem chi tiết
Thanh Hoàng Thanh
5 tháng 2 2021 lúc 16:06

a) Xét tam giác AHB và tam giác AHC:

AB = AC (tam giác ABC cân tại A)

^B = ^C (tam giác ABC cân tại A)

BH = CH (do H là trung điểm của BC)

=> Tam giác AHB = Tam giác AHC (c - g - c)

b) Vì H là trung điểm của BC (gt)

=> BH = CH = \(\dfrac{1}{2}\)BC = \(\dfrac{1}{2}\)8 = 4 (cm)

Xét tam giác ABH vuông tại H (AH vuông góc BH):

Ta có:      AB2 = AH2 + BH2 (định lý Py ta go)

Thay số: 102 = AH2 + 42

<=> AH2 = 102 - 42

<=> AH2 = 84 

<=> AH = \(2\sqrt{21}\) (cm)

c) Xét tam giác ABC cân tại A:

AH là đường trung tuyến (do H là trung điểm của BC)

=> AH là đường cao (TC các đường trong tam giác cân)

Xét tam giác ADM có:

H là trung điểm của AD (HA = HD)

C là trung điểm của DM (CD = CM)

=> HC là đường trung bình của tam giác ADM (định nghĩa đường trung bình trong tam giác)

=> HC // AM (TC đường trung bình trong tam giác)

Mà HC vuông góc AD (do BC vuông góc AH)=> AM vuông góc AD (Từ vuông góc đến //)

             

Thanh Hoàng Thanh
5 tháng 2 2021 lúc 21:00

A B C E D O

Thanh Hoàng Thanh
5 tháng 2 2021 lúc 21:08

bỉ ngạn hoa
Xem chi tiết
bỉ ngạn hoa
Xem chi tiết
bỉ ngạn hoa
26 tháng 6 2020 lúc 10:57

Trả lời phần d thôi nhé

Khách vãng lai đã xóa
Nhật Hạ
26 tháng 6 2020 lúc 17:53

I A B C H E F

a, Vì △ABC cân tại A => AB = AC và ABC = ACB

Xét △BAH và △CAH cùng vuông tại H

Có: AH là cạnh chung

      AB = AC (cmt)

=> △BAH = △CAH (ch-cgv)

b, Vì △BAH = △CAH (cmt)

=> BH = CH (2 cạnh tương ứng)

mà BH + CH = BC

=> BH = CH = BC : 2 = 12 : 2 = 6 (cm)

Xét △BAH vuông tại H có: AH2 + BH2 = AB2 (định lý Pytago)

=> AH2 = AB2 - BH2 = 102 - 62 = 64

=> AH = 8 (cm)

c, Vì EH // AC (gt) => ∠HAC = ∠AHE (2 góc so le trong)

Mà ∠HAC = ∠HAB (△CAH = △BAH)

=> ∠AHE = ∠HAB  => ∠AHE = ∠HAE 

=> △AHE cân tại E

d, Gọi { I } = EH ∩ BF

Vì HE // AC (gt) => ∠EHB = ∠ACB (2 góc đồng vị)

Mà ∠ABC = ∠ACB (cmt)

=> ∠EHB = ∠ABC => ∠EHB = ∠EBH => △EHB cân tại E => EB = EH

Mà EA = HE (△AHE cân tại E)

=> EA = BE 

Xét △BAH có: E là trung điểm AB (EA = BE)  => HE là đường trung tuyến

F là trung điểm AH => BF là đường trung tuyến 

EH ∩ BF = { I } 

=> I là trọng tâm của △BAH

\(\Rightarrow BI=\frac{2}{3}BF\) và \(HI=\frac{2}{3}EH\)

Xét △BHI có: BI + HI > BH (bđt △)

\(\Rightarrow\frac{2}{3}BF+\frac{2}{3}EH>\frac{BC}{2}\)

\(\Rightarrow\frac{2}{3}\left(BF+EH\right)>\frac{BC}{2}\)

\(\Rightarrow BF+EH>\frac{BC}{2}\div\frac{2}{3}=\frac{BC}{2}.\frac{3}{2}=\frac{3}{4}BC\) (đpcm)

Khách vãng lai đã xóa
Nguyễn Trường Hải
Xem chi tiết
Giang09
Xem chi tiết
thiên dương Sát thủ mắt...
17 tháng 4 2022 lúc 19:43

a)

Cách 1 là:

Xét 🔺AHB vuông tại H1 và 🔺AHB vuông tại H2 ,ta có: 

          AC=AB(vì là tam giác cân)

          góc B= góc C(vì là tam giác cân)

          =>🔺AHC=🔺AHC cạnh huyền-góc nhọn)

        => H là trung điểm của BC

Cách 2:

Xét 🔺AHC vuông tại H1 và 🔺 AHB vuông tại H2 ,ta có: 

           AB=AC(vì là tam giác cân)

            AH là cạnh chung

      => 🔺AHC=🔺 AHB ( cạnh huyền góc vuông)

      => H là trung điểm của BC

b) 

 

trần đức lâm
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 6 2023 lúc 22:27

a: \(AB=\sqrt{6^2+8^2}=10\left(cm\right)\)

BH<AH<AB

=>góc HAB<góc HBA<góc AHB

b: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

=>HB=HC

=>H là trung điểm của BC

c: góc KAH=góc HAC

góc KHA=góc HAC

=>góc KAH=góc KHA

=>ΔAKH cân tại K

Xét ΔABC có

H là trung điểm của BC

HK//AC

=>K là trung điểm của AB