cho tam giác ABC có AM cắt BC, BM=MC góc BAM=góc CAM. cm
a tam giac ABC cân
b Biết AB = 37; AM = 35, tính BC
cho tam giác ABC có AM cắt BC, BM=MC góc BAM=góc CAM. cm
câu a tam giac ABC cân
câu bBiết AB = 37; AM = 35, tính BC
cho tam giác abc cân tại a, kẻ am vuông góc bc.
a) chứng minh tam giác bam = tam giác cam
b)từ m kẻ đường song song với ab cắt ac tại n, bn cắt am tại g, cg cắt ab tại e. cminh en bằng bm
Asqwoiewoirewn9r9wer9we9r9ewr89ew8r90we8r
s
cho tam giác ABC cân M là điểm nằm giữa B và C cmr
a) Nếu MB=MC và AM vuông BC thì AB=AC
b)Nếu AM vuông BC và góc BAM=góc CAM thì AB=AC
c)Nếu góc BAM=góc CAM và MB=MC thì AB=AC
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Cho tam giác ABC vuông tại A có góc B bằng 60 độ . Trên cạnh BC lấy điểm M sao cho góc CAM bằng 30 độ.
Chứng minh:
A) Tam giác CAM cân
B) Tam giác BAM đều
C)M là trung điểm của đoạn thẳng BC
a: góc B+góc C=90 độ
=>góc C=90-60=30 độ
Xét ΔMAC có góc MAC=góc MCA(=30 độ)
nên ΔMAC cân tại M
b: góc MAB+góc MAC=góc BAC
=>góc MAB=90 độ-30 độ=60 độ
Xét ΔMAB có
góc MAB=60 độ
góc B=60 độ
=>ΔMAB đều
c: ΔMAB đều
=>MA=MB
ΔMAC cân tại M
=>MA=MC
=>MB=MC
=>M là trung điểm của BC
a) Xét ΔAMB vuông tại M và ΔAMC vuông tại M có
AB=AC(ΔABC cân tại A)
AM chung
Do đó: ΔAMB=ΔAMC(cạnh huyền-cạnh góc vuông)
Suy ra: MB=MC(hai cạnh tương ứng)
b) Ta có: ΔAMB=ΔAMC(cmt)
nên \(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)
c) Xét ΔDMB vuông tại D và ΔEMC vuông tại E có
MB=MC(cmt)
\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔDMB=ΔEMC(cạnh huyền-góc nhọn)
Suy ra: DM=EM(hai cạnh tương ứng)
Xét ΔMDE có MD=ME(cmt)
nên ΔMDE cân tại M(Định nghĩa tam giác cân)
Cho tam giac ABC vuông tại A co AB=3cm,AC=4cm,BC=5cm. Kẻ BM là tia phân giác của góc ABC,MH vuông góc với BC.
a) Chứng minh tam giác MBA=tam giác BMH
b)Chứng minh AM<MC
cho tam giác abc, kẻ BM vuông góc với AC tại M, biết Bm = 8cm, AB = 10 cm, MC = 15cm. Tính BC và AM. Hỏi tam giác ABC có vuông không? vì sao
xét tam giác BAM vuông tại M => Bm^2+ AM^2=AB^2 (định lý pytago)
=> 8^2+Am^2=10^2 => AM^2=36=6^2
xét tam giác BMC vuông tại M => BM^2 +MC^2 = BC^2
=> 8^2 + 15^2 =BC^2
=> BC^2= 17^2
=> AC=21 . tam giác abc: AB^2+BC^2ko bằng AC^2
=> tam giác abc ko vuông
Cho tam giac ABC có BC=5cm. Điểm M thuộc tia đối của tia BC sao cho CM = 3cm
a. Tính BM
b. Biết góc BAM = 80o, BAC = 60o. Tính góc CAM.
Cho tam giác ABC có AC=2AB, M là trung điểm của BC,D thuộc BC sao cho góc CAM bằng góc BAD.F la trung điểm của AB,G là trọng tâm tam giác ABC,EF cắt AD tại N và EF cắt AM tại K.Tính BD/BM