Cho tam giác ABC , trung tuyến AM có độ dài ma, AB=c ; AC=b ; BC=a . Cmr : 1/2.(b.sinB+c.sinC) < = ma
Giai giúp mk nhanh với chiều 5 giờ học rùi
Ai làm đúng mk tick cho nha
cho tam giác abc vuông tại a có ab =5 ac =12 . vẽ trung tuyến am của tam giác abc . trên tia đối của tia am lấy điểm k sao cho mk =ma
a, vẽ hình
b,chứng minh tam giác mkc =tam giác mab .từ đó suy ra kc vuông góc vs ac
c, tính độ dài am
b,- Ta có : AM là đường trung tuyến của tam giác vuông ABC .
=> AM = BM = CM = KM .
Xét \(\Delta MKC\) và \(\Delta MAB\) có :
\(\left\{{}\begin{matrix}BM=MC\\AM=MK\\\widehat{BMA}=\widehat{KMC}\end{matrix}\right.\)
=> \(\Delta MKC\) = \(\Delta MAB\) ( c - g - c )
- Xét tứ giác ABKC có :
AM = BM = CM = KM và tam giác ABC vuông tại A .
=> Tứ giác ABKC là hình chữ nhật.
=> KC vuông góc với AC .
c, - Áp dụng định lý pitago vào tam giác ABC vuông tại A :
\(BC=\sqrt{AB^2+AC^2}=13\left(cm\right)\)
Ta có : \(AM=\dfrac{1}{2}BC=\dfrac{13}{2}\)
Cho tam giác ABC vuông tại A, có AM là đường trung tuyến. Trên tia đối của tia MA, lấy hai điểm D và K sao cho MA=MK và GA=GD ( G là trọng tâm của tam giác ABC)
a) C/m AM=1/2 BC. Tính độ dài đoạn GA,GM biết rằng AB= 6cm, AC=8cm
b) C/m BD=GC
a) Ta có: ΔABC vuông tại A(gt)
mà AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)
nên \(AM=\dfrac{1}{2}BC\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
Bài 1. Cho tam giác ABC cân tại A. Kẻ AM vuông góc với BC tại M
a) Chứng minh AM là trung tuyến của tam giác
b) Biết AB = 15 cm; BC = 12 cm. Tính độ dài đường trung tuyến AM.
cho tam giác abc có ab=c ac=b bc=a kẻ trung tuyến am dài am=ma
cmr (b+c-a)/2<ma<(b+c)/2
Kẻ đường cao : BH , AI , CK
Ta có: sinA = BH / c ; sinB = AI / c
=> sinA/sinB = BH / AI (1)
Mà BH = a.sinC ; AI = b.sinC
=> BH/AI = a/b (2)
Từ (1) và (2) suy ra sinA/sinB = a/b => a/sinA = b/sinB
Bạn chỉ việc nói chứng minh tượng tự , ta có:
b/sinB = c/sinC ; c/sinC = a/sinA
Từ đó suy ra a /sinA = b / sinB = c /sinC
Chúc bạn học tốt
Kẻ đường cao : BH , AI , CK
Ta có: sinA = BH / c ; sinB = AI / c
=> sinA/sinB = BH / AI (1)
Mà BH = a.sinC ; AI = b.sinC
=> BH/AI = a/b (2)
Từ (1) và (2) suy ra sinA/sinB = a/b => a/sinA = b/sinB
Bạn chỉ việc nói chứng minh tượng tự , ta có:
b/sinB = c/sinC ; c/sinC = a/sinA
Từ đó suy ra a /sinA = b / sinB = c /sinC
Chúc bạn học tốt
Kẻ đường cao : BH , AI , CK
Ta có: sinA = BH / c ; sinB = AI / c
=> sinA/sinB = BH / AI (1)
Mà BH = a.sinC ; AI = b.sinC
=> BH/AI = a/b (2)
Từ (1) và (2) suy ra sinA/sinB = a/b => a/sinA = b/sinB
Bạn chỉ việc nói chứng minh tượng tự , ta có:
b/sinB = c/sinC ; c/sinC = a/sinA
Từ đó suy ra a /sinA = b / sinB = c /sinC
Chúc bạn học tốt
Cho tam giác ABC vuông tại A, biết AB=6cm, AC=8cm. Kẻ đường trung tuyến AM a/ Tính độ dài cạnh BC và AM b/ Trên tia đối của tia MA lấy điểm D sao cho MD=MA. Chứng minh tam giác AMC= tam giác DMB. c/ Chứng minh DB vuông AB. Mọi người giúp mình giải nhanh nhé, vì mình đang cần gấp, cảm ơn mn.
1. Cho tam giác ABC có góc B=45 độ, góc C=30 độ , BM là đường trung tuyến của tam giác ABC. Tính số đo góc AMB
2. Cho tam giác ABC có AB=6cm, AC=10cm, độ dài đường trung tuyến AM=4cm. Tính diện tích tam giác ABC
Cho tam giác ABC có AB=AC=10cm; BC=16cm. Trung tuyến AM. Chứng Minh rằng : A) Tam giác ABM= Tam giác AC B) AM vuông góc BC C) Tính độ dài AM
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
c: BM=CM=BC/2=8(cm)
nên AM=6(cm)
tham khảo
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
c: BM=CM=BC/2=8(cm)
nên AM=6(cm)
a, Ta có :
AB = AC (gt)
=> Δ ABC cân tại A
Xét Δ ABM và Δ ACM, có :
AB = AC (gt)
MB = MC (M là trung điểm BC)
\(\widehat{ABM}=\widehat{ACM}\) (Δ ABC cân tại A)
=> Δ ABM = Δ ACM
b, Ta có :
AM là đường trung tuyến
Δ ABC cân tại A
=> AM ⊥ BC
c, Ta có :
BC = 2MB
=> 16 = 2MB
=> MB = 8 (cm)
Xét Δ AMB vuông tại M, có :
\(AB^2=AM^2+BM^2\)
=> \(10^2=AM^2+8^2\)
=> \(AM^2=36\)
=> AM = 6 (cm)
Cho tam giác ABC vuông tại A có AB=6cm;AC=8cm. Vẽ trung tuyến AM
a) Tính độ dài cạnh AM
b) Trên tia đối của tia MA lấy điễm D sao cho MD=MA. Chứng minh tam giác AMB=DMC
c)Chứng minh:AC vuông góc với DC
giúp mik vs nha !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Cho tam giác ABC , góc A = 90 độ . Trung tuyến AM . Trên tia đối của tia MA lấy điểm E sao cho ME = AM . chứng minh rằng
a)Tam giác ABM = tam giác ECM
b)Góc CAM = 90 độ
c)Biết AM = EC = 13cm , BC = 10cm . Tính độ dài trung tuyến AM
Cho tam giác ABC cân tại A có BC=6cm, AB=4cm
a) Tính độ dài AC
b) Kẻ trung tuyến AM của tam giác ABC, trên tia MA lấy điểm I sao cho MI=1cm. Đường thẳng BI cắt AC tại K. C/m K là trung điểm của AC
Áp dụng định lý hàm số COS ta có:
AC^2 = AB^2+AC^2 - 2AB.AC.cosB
= 12^2 + 6^2 -2.12.6.(-1/2) = 252 ------> AC = CĂN 252
Vì BD là phân giác của góc B nên theo tính chất ta có:
AD/AC =AB/BC = 6/12 = 1/2
----> DC = 2 AD , mà AC = CĂN 252 ------> AD= 1/3 căn 252
Áp dụng định lý hàm số COS đồi với tam giác ABD có:
AD^2=AB^2+BD^2 - 2AB.BD.cosB
<=>(1/3 căn 252)^2= 6^2+ BD^2 - 2.6.BD.(1/2)
<=> BD^2 - 6BD + 8 =0
<=> BD = 4 hoặc BD =2
Vậy: BD = 4 (cm)
Trên đây là bài giải với ĐK: BD là phân giác trong.
còn nếu BD là phân giác ngoài thì tỉ lệ: AC/AD =AB/BC
DO VẬY BD = 8 cm
hoac vay