Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nam Nguyen
Xem chi tiết
I don
9 tháng 3 2018 lúc 17:31

XÉT TAM GIÁC ABC 

CÓ: \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) ( định lí)

THAY SỐ: \(90^0+\widehat{C}=180^0\)

                             \(\widehat{C}=180^0-90^0\) 

                            \(\widehat{C}=90^0\)

\(\Rightarrow\Delta ABC\) VUÔNG TẠI C ( ĐỊNH LÍ)

CHÚC BN HỌC TỐT!!!!!!!!

Ny Pii
Xem chi tiết
Mirai
21 tháng 3 2021 lúc 16:20

undefined

Tuấn Nguyễn
Xem chi tiết
Đoàn Quang Thanh
8 tháng 3 2018 lúc 18:25

không nha

vì 6/9 khác 8/15

=> hai tam giác ko đồng dạng

an mai
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 5 2023 lúc 19:25

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

AH=3*4/5=2,4cm

 

Minh Phương
9 tháng 5 2023 lúc 19:39

a. Xét ΔHBA và ΔABC có:

       \(\widehat{H}=\widehat{A}\) = 900 (gt)

        \(\widehat{B}\) chung

\(\Rightarrow\)  ΔHBA \(\sim\) ΔABC (g.g)

b. Vì  ΔABC vuông tại A

Theo đ/lí Py - ta - go ta có:

  BC2 = AB2 + AC2

  BC2 = 32 + 42

\(\Rightarrow\) BC2 = 25 cm

\(\Rightarrow\) BC = \(\sqrt{25}=5\) cm

Ta lại có:  ΔHBA \(\sim\) ΔABC

   \(\dfrac{AH}{CA}=\dfrac{BA}{BC}\) 

\(\Leftrightarrow\dfrac{AH}{4}=\dfrac{3}{5}\) 

\(\Rightarrow\) AH = 2,4 cm

Tae Tae
Xem chi tiết
Lợi Nguyễn Công
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 1 2022 lúc 18:52

Xét ΔABC có BM là đường phân giác

nên AM/AB=CM/CB

=>AM/3=CM/5

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AM}{3}=\dfrac{CM}{5}=\dfrac{AM+CM}{3+5}=\dfrac{4}{8}=\dfrac{1}{2}\)

Do đó: AM=1,5(cm)

Xét ΔABM vuông tại A và ΔDEF vuông tại D có 

AB/DE=AM/DF

Do đó: ΔABM\(\sim\)ΔDEF

Charmaine
Xem chi tiết
Phạm Vĩnh Linh
5 tháng 8 2021 lúc 16:27

undefined

Triệu Nguyễn Gia Huy
Xem chi tiết
Cíu iem
Xem chi tiết
Nguyễn Huy Tú
20 tháng 2 2022 lúc 18:17

a, Theo định lí Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=5cm\)

Theo định lí Pytago tam giác MNP vuông tại N

\(NP=\sqrt{MP^2-MN^2}=6cm\)

b, Xét tam giác ABC và tam giác NPM có 

^BAC = ^PNM = 900

\(\dfrac{AB}{NP}=\dfrac{AC}{NM}=\dfrac{3}{6}=\dfrac{4}{8}=\dfrac{1}{2}\)

Vậy tam giác ABC ~ tam giác NPM ( c.g.c ) 

Cíu iem
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 2 2022 lúc 20:08

a: \(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\)

\(NP=\sqrt{10^2-8^2}=6\left(cm\right)\)

b: Xét ΔABC vuông tại A và ΔNPM vuông tại N có 

AB/NP=AC/NM

Do đó: ΔABC\(\sim\)ΔNPM