Bài 4.
a) Lập phương trình đường thẳng (d) đi qua điểm M (-1; 3) và có hệ số góc bằng 2.
b) Lập phương trình đường thẳng (d) đi qua M(3; 5) và song song với đường thẳng (d’) có phương trình y = 2x
c) Lập phương trình đường thẳng (d) đi qua M(3; 5) và/vg/goc với đường thẳng (d’) có phương trình y = 2x
d) Tìm a, b để đồ thị hàm số đi qua điểm A(1; 2) và B(2;1)
e) Lập phương trình đường thẳng đi qua gốc toạ độ O và điểm A(1; 2)
f) Lập phương trình đường thẳng (d) đi qua M(2; -1) và vuông góc với đường thẳng (d’) có phương trình: y = −1 2 x +3
c) Lập phương trình đường thẳng (d) đi qua M(3; 5) và/vg/goc với đường thẳng (d’) có phương trình y = 2x
d) Tìm a, b để đồ thị hàm số đi qua điểm A(1; 2) và B(2;1)
e) Lập phương trình đường thẳng đi qua gốc toạ độ O và điểm A(1; 2)
f) Lập phương trình đường thẳng (d) đi qua M(2; -1) và vuông góc với đường thẳng (d’) có phương trình: y = −1 2 x +3
giúp/mik/mik/đang/cần/gấp/ạ
c) Lập phương trình đường thẳng (d) đi qua M(3; 5) và/vg/goc với đường thẳng (d’) có phương trình y = 2x
d) Tìm a, b để đồ thị hàm số đi qua điểm A(1; 2) và B(2;1)
e) Lập phương trình đường thẳng đi qua gốc toạ độ O và điểm A(1; 2)
f) Lập phương trình đường thẳng (d) đi qua M(2; -1) và vuông góc với đường thẳng (d’) có phương trình: y = −1 2 x +3
c) Lập phương trình đường thẳng (d) đi qua M(3; 5) và/vg/goc với đường thẳng (d’) có phương trình y = 2x
d) Tìm a, b để đồ thị hàm số đi qua điểm A(1; 2) và B(2;1)
e) Lập phương trình đường thẳng đi qua gốc toạ độ O và điểm A(1; 2)
f) Lập phương trình đường thẳng (d) đi qua M(2; -1) và vuông góc với đường thẳng (d’) có phương trình: y = −1 2 x +3
c)
(d) vuông góc với (d') : y = 2x
=> (d) có dạng : y = -2x + b
(d) đi qua M (3,5) :
5 = (-2) . 3 + b
=> b = 10
(d) : y = -2x + 10
d)
Gọi : hàm số có dạng : y = ax + b
Hàm số đi qua điểm A ( 1,2) , B(2,1) nên :
\(\left\{{}\begin{matrix}2=a+b\\1=2a+b\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=3\end{matrix}\right.\)
e)
(d) đi qua gốc tọa độ O :
=> d : y = ax
(d) đi qua điểm A(1;2) nên :
2 = a * 1
=> a = 2
(d) : y = 2x
d) Tìm a, b để đồ thị hàm số đi qua điểm A(1; 2) và B(2;1)
e) Lập phương trình đường thẳng đi qua gốc toạ độ O và điểm A(1; 2)
f) Lập phương trình đường thẳng (d) đi qua M(2; -1) và vuông góc với đường thẳng (d’) có phương trình: y = −1 2 x +3
Trong mặt phẳng tọa độ cho hai điểm A(3;0), B(0;2) và đường thẳng d: x + y = 0.
a) Lập phương trình tham số của đường thẳng Δ đi qua A và song song với d
b) Lập phương trình đường tròn đi qua A,B và có tâm thuộc đường thẳng d
c) Lập phương trình chính tắc của elip đi qua điểm B và có tâm sai e = 5 3
Đường thẳng Δ song song với d ⇒ Δ: x + y + c = 0, (c ≠ 0)
Vì Δ đi qua A ⇒ 3 + 0 + c = 0 ⇒ c = -3(tm)
Vậy đường thẳng Δ có dạng: x+y-3=0
Vì đường tròn có tâm I thuộc d nên I(a;-a)
Vì đường tròn đi qua A, B nên I A 2 = I B 2 ⇒ (3 - a ) 2 + a 2 = a 2 + (2 + a ) 2 ⇔ (3 - a ) 2 = (2 + a ) 2
Vậy phương trình đường tròn có dạng:
Ta có:
Giả sử elip (E) có dạng:
Vì (E) đi qua B nên:
Mà
Vậy phương trình chính tắc của elip (E) là:
Lập phương trình đường thẳng (d') // với đường thẳng (d1) y=-3x và đi qua điểm M(1:3)
Vì (d') // (d1) => (d') có dạng y = -3x + b (với \(b\ne0\))
Mà đường thẳng (d') đi qua M(1;3) => \(3=-3\cdot1+b\Rightarrow b=6\)
Vậy pt đường thẳng (d') là y = -3x+6
Vì (d)//(d1) nên a=-3
hay (d): y=-3x+b
Thay x=1 và y=3 vào (d), ta được:
\(-3\cdot1+b=3\)
\(\Leftrightarrow b=6\)
Vậy: (d): y=-3x+6
Lập phương trình đường thẳng d biết
a) d đi qua 2 điểm M(5;-1); N(6;4)
b) d đi qua 2 điểm A(5;-2) ; B(5;-4)
c) d đi qua C(4;1) và có hệ số góc bằng -3
a) Gọi phương trình đường thẳng d là y = ax + b. Ta có: 5a + b = -1 và 6a + b = 4.
Do đó a = 5 và b = -26.
Vậy phương trình đường thẳng d là y = 5x - 26
b,c tương tự
Trong không gian Oxyz, cho hai điểm A(-2; -2; -4), M(1; 0; 0). Lập phương trình đường thẳng d đi qua điểm M, nằm trong mặt phẳng (P): x + y + z - 1 = 0 sao cho khoảng cách từ A đến đường thẳng d đạt giá trị lớn nhất
A. d : x - 1 - 2 = y 1 = z 1
B. d : x - 1 3 = y 2 = z 4
C. d : x + 1 2 = y 1 = z 1
D. d : x - 1 1 = y 1 = z 1
Đáp án A
Ta có:
AM → (3; 2; 4)
Mặt phẳng (P) có vecto pháp tuyến là n p → (1; 1; 1)
Gọi H là hình chiếu vuông góc của A trên d. Ta có: d(A; d) = AH ≤ AM = 29
Dấu bằng xảy ra khi và chỉ khi H trùng M, nghĩa là d vuông góc với AM.