Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm nhật nam
Xem chi tiết
Ngọc Chi
Xem chi tiết
Hoàng Anh
26 tháng 4 2020 lúc 15:52

ai biêt

Khách vãng lai đã xóa
Mirai
21 tháng 3 2021 lúc 15:06

undefined

andiengn
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 2 2022 lúc 22:42

Thay tọa độ A vào 2 pt trung tuyến đều không thỏa mãn

\(\Rightarrow\) 2 trung đó đó xuất phát từ B và C, giả sử trung tuyến xuất phát từ B có pt x-2y+1=0 và từ C có pt y=1

\(\Rightarrow B\left(2b-1;b\right)\) ; \(C\left(c;1\right)\)

Gọi G là trọng tâm tam giác \(\Rightarrow\) G là giao điểm 2 trung tuyến nên tọa độ thỏa mãn:

\(\left\{{}\begin{matrix}x-2y+1=0\\y=1\end{matrix}\right.\) \(\Rightarrow G\left(1;1\right)\)

Áp dụng công thức trọng tâm:

\(\left\{{}\begin{matrix}1+2b-1+c=3.1\\3+b+1=3.1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2b+c=3\\b=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=-1\\c=5\end{matrix}\right.\)

\(\Rightarrow B\left(-3;-1\right)\) ; \(C\left(5;1\right)\)

Biết 3 tọa độ 3 đỉnh của tam giác, dễ dàng viết được phương trình các cạnh

Kyorin
Xem chi tiết
Ngô Thành Chung
10 tháng 4 2021 lúc 21:28

Đường thẳng AB nhận \(\overrightarrow{n}=\left(1;2\right)\) làm vecto pháp tuyến

AB đi qua A (1; -1) nên nó có phương trình là

x - 1 + 2 (y + 1) = 0 hay x + 2y + 1 = 0

Gọi M là trung điểm của AB ⇒ M ∈ Δ, tọa độ của M có dạng

M (t ; 2t + 1) với t là số thực và \(\overrightarrow{AM}=\left(t-1;2t+2\right)\)

⇒ AM ⊥ Δ 

⇒ \(\overrightarrow{AM}.\overrightarrow{n}=0\)

⇒ t + 1 + 2. (2t + 2) = 0

⇒ t = -1

Vậy M (- 1; - 1)

M là trung điểm của AB => Tọa độ B

Làm tương tự như thế sẽ suy ra tọa độ C

 

 

Super Idol
Xem chi tiết
Chee My
Xem chi tiết
Trần Tuấn
Xem chi tiết
andiengn
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 2 2022 lúc 22:54

Cách làm 2 câu tương tự nhau.

a.

\(\overrightarrow{AB}=\left(2;3\right)\Rightarrow\) đường thẳng AB nhận (3;-2) là 1 vtpt

Phương trình AB (qua A) có dạng:

\(3\left(x-1\right)-2\left(y-1\right)=0\Leftrightarrow3x-2y-1=0\)

\(\overrightarrow{HA}=\left(1;1\right);\overrightarrow{HB}=\left(3;4\right)\)

Do BC vuông góc AH nên nhận (1;1) là 1 vtpt

Phương trình BC (đi qua B) có dạng:

\(1\left(x-3\right)+1\left(y-4\right)=0\Leftrightarrow x+y-7=0\)

Do AC vuông góc HB nên nhận (3;4) là 1 vtpt

Phương trình AC (đi qua A) có dạng:

\(3\left(x-1\right)+4\left(y-1\right)=0\Leftrightarrow3x+4y-7=0\)

Câu b hoàn toàn tương tự

Nguyễn phương anh
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 2 2022 lúc 15:04

Giả sử M là trung điểm AB, N là trung điểm AC, P là trung điểm BC

\(\Rightarrow\) MN, MP, NP là các đường trung bình của tam giác

\(\Rightarrow MN||BC\) ; \(MP||AC\) ; \(NP||AB\)

\(\overrightarrow{MN}=\left(3;2\right);\overrightarrow{MP}=\left(1;-5\right);\overrightarrow{PN}=\left(2;7\right)\)

\(\Rightarrow\) BC, AC, AB có vecto chỉ phương lần lượt là (3;2); (1;-5); (2;7)

Phương trình chính tắc BC qua P có dạng: \(\dfrac{x-3}{3}=\dfrac{y+4}{2}\)

Phương trình chính tắc AC qua N có dạng: \(\dfrac{x-5}{1}=\dfrac{y-3}{-5}\)

Phương trình chính tắc AB qua M có dạng: \(\dfrac{x-2}{2}=\dfrac{y-1}{7}\)

andiengn
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 2 2022 lúc 22:45

Do G thuộc y=x nên tọa độ G có dạng: \(G\left(g;g\right)\)

Do C thuộc \(x+y+4=0\) nên tọa độ có dạng: \(C\left(c;-c-4\right)\)

Áp dụng công thức trọng tâm:

\(\left\{{}\begin{matrix}-1+1+c=3.g\\0+2-c-4=3g\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}c-3g=0\\-c-3g=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}c=-1\\g=-\dfrac{1}{3}\end{matrix}\right.\)

\(\Rightarrow C\left(-1;-3\right)\)

Biết tọa độ 3 đỉnh, dễ dàng viết pt các cạnh