Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyen thi nhu nhung

Những câu hỏi liên quan
Nguyễn Khánh Quang Huy
Xem chi tiết
_ɦყυ_
Xem chi tiết
Hacke_______r
7 tháng 5 2017 lúc 22:51

mik vẽ hik ko ra chắc đề có sai sót j đó =) :x :x

who am I
Xem chi tiết
Hải Đăng
12 tháng 2 2019 lúc 21:48

A B C H I D M

a) Ta có: \(MA=MB\) ( M là trung điểm của BC )

\(HM=HD\) ( D đối xứng với H qua M )
\(\Rightarrow\) BHCD là hình bình hành

\(\Rightarrow BD//CH\)\(CH\perp AB\)

\(\Rightarrow BD\perp AB\) hay \(\Delta ABD\) vuông tại B

tương tự ta cũng chứng minh đc: \(\Delta ACD\) vuông tại C

b) Ta có: \(IA=ID=\dfrac{AD}{2}\) ( I là trung điểm của AD )

\(\Delta ABD\) vuông tại B có BI là đường trung tuyến ứng với cạnh huyền AD nên:

\(BI=\dfrac{AD}{2}\)

Tương tự: \(CI=\dfrac{AD}{2}\)

Vậy \(IA=IB=IC=ID\)

Son go Ku
Xem chi tiết
Thanh Tùng DZ
3 tháng 1 2020 lúc 20:44

bạn viết tiếng việt đi bạn. nhìn thế khó đọc

Khách vãng lai đã xóa
Thanh Tùng DZ
3 tháng 1 2020 lúc 22:22

A B C I G A1 B1 C1 J

Gọi G' là giao điểm của IJ và AA1

Xét \(\Delta ABC\)có B1,C1 lần lượt là trung điểm của AC,AB nên B1C1 là đường trung bình 

\(\Rightarrow B_1C_1=\frac{BC}{2}\)

Tương tự : \(A_1B_1=\frac{AB}{2};A_1C_1=\frac{AC}{2}\)

Xét \(\Delta ABC\)và \(\Delta A_1B_1C_1\)có \(\frac{A_1B_1}{AB}=\frac{B_1C_1}{BC}=\frac{A_1C_1}{AC}=\frac{1}{2}\)

\(\Rightarrow\Delta A_1B_1C_1~\Delta ABC\left(c.c.c\right)\)\(\Rightarrow\widehat{B_1A_1C_1}=\widehat{BAC};\widehat{A_1B_1C_1}=\widehat{ABC}\)

Mà \(\widehat{JA_1B_1}=\frac{\widehat{B_1A_1C_1}}{2},\widehat{IAB}=\frac{\widehat{BAC}}{2},\widehat{JB_1A_1}=\frac{\widehat{A_1B_1C}}{2},\widehat{IBA}=\frac{\widehat{ABC}}{2}\)

Nên \(\widehat{JA_1B_1}=\widehat{IAB};\widehat{JB_1A_1}=\widehat{IBA}\)

Do đó \(\Delta JA_1B_1~\Delta IAB\left(g.g\right)\Rightarrow\frac{JA_1}{IA}=\frac{A_1B_1}{AB}=\frac{1}{2}\)

Mà \(\widehat{BAA_1}=\widehat{AA_1B_1}\) nên \(\widehat{IAA_1}=\widehat{IA_1A}\)Suy ra AI // A1J

Xét \(\Delta G'AI\)có AI // A1J nên \(\frac{G'A_1}{G'A}=\frac{G'J}{G'I}=\frac{JA_1}{IA}=\frac{1}{2}\Rightarrow AG'=\frac{2}{3}AA_1\)

Xét \(\Delta ABC\)có AA1 là đường trung tuyến, G' thộc đoạn thẳng AAvà AG' = \(\frac{2}{3}AA_1\)

Do đó : G' là trọng tâm của tam giác ABC nên G' \(\equiv\)G.

Vậy I,G,J thẳng hàng và GI = 2GJ

Khách vãng lai đã xóa
phuong linh
Xem chi tiết
phuong linh
Xem chi tiết
Nguyen Dao Danh Loi
Xem chi tiết
tran linh
Xem chi tiết
Bùi Thu Nguyệt
Xem chi tiết