cho a+b+c=2017; 1/a+b +1/b+a +1/c+a =1/90
cacs bạn giúp mk với ạ!! mk cần gấp lắm ạ!!
Cho a,b,c # 0 và a+b+c#0 thỏa mãn 1/a+1/b+1/c=1/a+b+c cmr 1/a^2017+1/b^2017+1/c^2017=1/a^2017+b^2017+c^2017
Lời giải:
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}$
$\Leftrightarrow (\frac{1}{a}+\frac{1}{b})+(\frac{1}{c}-\frac{1}{a+b+c})=0$
$\Leftrightarrow \frac{a+b}{ab}+\frac{a+b}{c(a+b+c)}=0$
$\Leftrightarrow (a+b)(\frac{1}{ab}+\frac{1}{c(a+b+c)})=0$
$\Leftrightarrow (a+b).\frac{ab+c(a+b+c)}{abc(a+b+c)}=0$
$\Leftrightarrow \frac{(a+b)(c+a)(c+b)}{abc(a+b+c)}=0$
$\Leftrightarrow (a+b)(c+a)(c+b)=0$
$\Leftrightarrow a+b=0$ hoặc $c+a=0$ hoặc $c+b=0$
Không mất tổng quát giả sử $a+b=0$
$\Leftrightarrow a=-b$.
Khi đó:
$\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}=\frac{1}{(-b)^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}$
$=\frac{-1}{b^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}$
$=\frac{1}{c^{2017}}=\frac{1}{(-b)^{2017}+b^{2017}+c^{2017}}$
$=\frac{1}{a^{2017}+b^{2017}+c^{2017}}$ (đpcm)
Lần sau bạn lưu ghi đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt nhất. Mọi người đọc đề của bạn dễ hiểu thì cũng sẽ dễ giúp hơn.
cho a,b,c khác 0 thỏa mãn a^2017 b^2017 c^2017=1; a^2(b c) b^2(c a) c^2(a b) 2abc =0 tính 1/a^2017 1/b^2017 1/c^2017
Cho ( a+b+c)*(a*b+b*c+c*a)=2017
a*b*c=2017
Tính P=(b^2*c+2017)*(c^2*a+2017)*(a^2*b+2017)
cho a,b,c thoả mãn a^2016+b^2016+c^2016=a^2017+b^2017+c^2017=1. Tính B=a^2015+b^2016+c^2017
cho a+b+c=0 va a³+b³+c³=0. Tinh A= a^2017+b^2017+c^2017.
cho a ,b,c,d thỏa mãn a+b=c+d , a^2+b^2=c^2+d^2 cmr a^2017+b^2017=c^2017+d^2017
Cho a,b,c,d thuộc Z.Thỏa mãn a+b=c+d.Mà a2+b2=c2+d2.Chứng minh a^2017+b^2017=c^2017+d^2017
cho 3 so a,b,c biet a+b+c=1,1\a+1\b+1\c=1 tinh a^2017+b^2017+c^2017
a^2017 + b^2017 + c^2017 chia het cho 6 nếu a + b + c chia hết cho 6
Ta có:\(a^{2017}+b^{2017}+c^{2017}-a-b-c\)
\(=a.\left(a^{2016}-1\right)+b.\left(b^{2016}-1\right)+c.\left(c^{2016}-1\right)\)
\(=a\left(a-1\right)\left(a^{2015}+...+a+1\right)+b\left(b-1\right)\left(b^{2015}+...+b+1\right)+c\left(c-1\right)\left(c^{2015}+...+c+1\right)\)
Ta có:\(a^{2015}+a^{2014}+.....+a+1=a^{2014}\left(a+1\right)+.......+a^2\left(a+1\right)+\left(a+1\right)\)
\(=\left(a+1\right)\left(a^{2014}+a^{2012}+.......+1\right)\)\(\Rightarrow a^{2017}-a\) chia hết cho cả 2 và 3
\(\Rightarrow a^{2017}-a⋮6\).Tương tự ta cũng có:\(\hept{\begin{cases}b^{2017}-b⋮6\\c^{2017}-c⋮6\end{cases}}\)
\(\Rightarrow a^{2017}+b^{2017}+c^{2017}-\left(a+b+c\right)⋮6\) mà \(a+b+c⋮6\Rightarrow a^{2017}+b^{2017}+c^{2017}⋮6\)
\(\Rightarrowđpcm\)
Hàng thứ 3 mình áp dụng HĐT này nè:
\(a^n-b^n=\left(a-b\right)\left(a^{n-1}+a^{n-2}b+a^{n-3}b^2+......+ab^{n-2}+b^{n-1}\right)\)
Còn gì không hiểu bạn cứ hỏi:
\(a^{2016}-1=\left(a-1\right)\left(a^{2016-1}.1+a^{2016-2}.1^2+.........+a^{2016-2016}.1^{2016}\right)\)
\(=\left(a-1\right)\left(a^{2015}+a^{2014}+........+a+1\right)\)
Cho b2 = a*c, c2 = b*d (với b, c, d khác 0), (b+c khác 0), (b2017 + c2017 khác d2017). Chứng minh rằng a2017 + b2017 - c2017 / b2017 + c2017 - d2017 = (a + b- c)2017 / (b + c -d)2017.