Cho Hình bình hành ABCD. Vẽ đẹp đi qua A, d cắt BC tại F, d cắt BD tại E, d cắt CD tại G
A) cmr : ∆DAE; ∆BEF đồng dạng
B) ∆DGE và ∆AEB đồng dạng
C) AE² = EF . EG
D) cmr : BF.DG không đổi khi quay xung quanh điểm A
Bài 1: Cho hình bình hành ABCD. Vẽ tia Bx vuông góc với AC, Dy vuông góc với AC. Đường thẳng qua A vuông góc với BD cắt Bx tại P, cắt Dy tại Q. Đường thẳng qua C vuông góc với BD cắt Bx tại N, cắt Dy tại M. Đường thẳng NQ cắt AD ở E, BC ở F. CMR: MNPQ, MEPF là hình bình hành.
Bài 2: Cho tứ giác ABCD có AD = BC, góc C và góc D tù. Gọi M, N, P, Q lần lượt là trung điểm AB, AC, CD, BD. MNPQ là hình gì? Chứng minh.
Cho hình bình hành ABCD O là giao điểm 2 đường chéo ac và bd. Qua o vẽ đường thẳng a cắt ad và bc tại e và f đường thẳng b cắt ab và cd tại k và h . CMR ekfh là hình bình hành
Cho hình bình hành ABCD(AB>BC) tia phân giác của góc D cắt AB tại E, tia phân giác của góc B cắt CD tại F. Cmr: a) DE//BF
Cách 1: Tách số hạng thứ hai
x2 – 6x + 8 = x2 – 2x – 4x + 8
= x(x – 2) – 4( x – 2)
= (x – )(x – 4).
Cách 2: Tách số hạng thứ 3
x2 - 6x + 8 = x2 – 6x + 9 – 1
= (x – 3)2 – 1 = ( x – 3 – 1)(x – 3 + 1)
= (x – 4)( x – 2).
Cách 3: x2 – 6x + 8 = x2 – 4 – 6x + 12
= ( x – 2)(x + 2) – 6(x – 2)
= (x – 2)(x – 4)
Cách 4: x2 – 6x + 8 = x2 – 16 – 6x + 24
= ( x – 4)(4 + x) – 6(x – 4)
= (x – 4)( x + 4 – 6)
= (x – 4) ( x – 2).
Cách 5 : x2 – 6x + 8 = x2 – 4x + 4 – 2x + 4
= (x – 2)2 – 2( x – 2)
= (x – 2)( x – 2 – 2)
= ( x – 2)(x – 4).
Cho hình bình hành ABCD. Qua A vẽ tia Ax cắt đường chéo BD tại E cắt cạnh BC tại F và cắt đường thẳng DC tại G. Chứng minh rằng tích BF. DG không đổi.
1 ) Cho tam giác ABC . Phân giác góc A cắt cạnh BC tại d . Qua d vẻ đường thẳng song song với AB , đường này cắt AC tại E . Đường thẳng qua E // BC cắt AB tại F
- Chứng minh : AE = BF
2) Cho hình bình hành ABCD . Gọi MNPQ theo thứ tự là trung điểm của cạnh AB , BC , CD , DA đường thẳng AN cắt DM , BP theo thứ tự tại E và F . Đường thẳng CQ cắt BP , DM theo thứ tự G , H
A) chứng minh : tứ giác EFGH là hình bình hành
B ) chứng minh : các đường thẳng AC , BD , EG, FH đồng quy tại một điểm
cho hình bình hành abcd. gọi o là giao điểm hai đường chéo ac và bd. qua điểm o, vẽ đường thẳng d cắt hai đường thẳng ad, bc lần lượt tại e, f. qua o vẽ đưòng thẳng d' cắt hai cạnh ab, cd lần lượt tại k, h.
a cm akch và aecf là hbh
b cm ekfh là hbh
Vẽ hộ mình cái hình nhe
cho hình bình hành ABCD, đường thẳng d đi qua A cắt đường chéo BD tại P,cắt các đường thẳng BC, CD lần lượt tại M,N. CM BM.DN=AB.AD
cho hình bình hành ABCD . Qua A kẻ đường thẳng cắt BD,BC,CD tại E,K,G.
CMR EK.EG không đổi
hình vẽ hơi xấu mong bạn thông cảm
do BK// AD nên \(\frac{EK}{AE}\)= \(\frac{BE}{ED}\) (1)
do AB// DG nên \(\frac{AE}{EG}\)= \(\frac{BE}{ED}\) (2)
từ (1) và (2) => \(\frac{EK}{AE}\)= \(\frac{AE}{EG}\)
=> \(EK.EG=AE^2\)
nên \(EK.EG\) là không đổi
Cho hình chữ nhật ABCD (AB>BC).Trên AB lấy điểm E, trên CD lấy điểm F cho cho AE=CF.
a) Chứng minh AECF là hình bình hành.
b) Đường thẳng DB cắt AF tại M và cắt CE tại N.Chứng minh BN=CM.
c) Đường thẳng qua E song song với BD cắt AD tại I, đường thẳng qua F và song song với BD cắt BC tại K.Chứng minh các đường thẳng AC,EF và IK cùng đi qua trung điểm O của BD.
d) Cho góc AOD=60° và AD=1cm. tính diện tích hình chữ nhật ABCD.
AE = CF (gt)
mà AE // CF (ABCD là hình chữ nhật)
=> AECF là hình bình hành
=> FA // CE
=> AFD = ECF (2 góc đồng vị)
mà ECF = CEB (2 góc so le trong, AB // CD)
=> AFD = CEB (1)
AB = CD (ABCD là hình chữ nhật)
mà AE = CF (gt)
=> AB - AE = CD - CF
=> EB = DF (2)
Xét tam giác NEB và tam giác MFD có:
NEB = MFD (theo 1)
EB = FD (theo 2)
EBN = FDM (2 góc so le trong, AB // CD)
=> Tam giác NEB = Tam giác MFD (g.c.g)
=> BN = DM (2 cạnh tương ứng)
O là trung điểm của BD (3)
=> O là trung điểm của AC (ACBD là hình chữ nhật) (4)
=> O là trung điểm của EF (AECF là hình bình hành) (5)
AEI = ABD (2 góc so le trong, EI // BD)
CFK = CDB (2 góc so le trong, FK // BD)
mà ABD = CBD (2 góc so le trong, AB // CD)
=> AEI = CFK (6)
EI // BD (gt)
FK // DB (gt)
=> EI // FK (7)
Xét tam giác EAI và tam giác FCK có:
IEA = KFC (theo 6)
EA = FC (gt)
EAI = FCK (= 900)
=> Tam giác EAI = Tam giác FCK (g.c.g)
=> EI = FK (2 cạnh tương ứng)
mà EI // FK (theo 7)
=> EIFK là hình bình hành
mà O là trung điểm của EF (theo 5)
=> O là trung điểm của IK (8)
Từ (3), (4), (5) và (8)
=> AC, EF, IK đồng quy tại O là trung điểm của BD
O là trung điểm của AC và BD
=> OA = OC = \(\frac{AC}{2}\)
OB = OD = \(\frac{BD}{2}\)
mà AC = BD (ABCD là hình chữ nhật)
=> OA = OD = OB = OC
=> Tam giác OAD cân tại O
mà AOD = 600
=> Tam giác OAD đều
=> AD = OA = OD
mà AD = 1 cm
AD = BC (ABCD là hình chữ nhật)
=> OA = OD = OC = OB = BC = 1 cm
=> AC = 2OA = 2 . 1 = 2 cm
Xét tam giác BAC vuông tại B có:
\(AC^2=BA^2+BC^2\) (định lý Pytago)
\(AB^2=AC^2-BC^2\)
\(=2^2-1^2\)
\(=4-1\)
= 3
\(AB=\sqrt{3}\)
\(S_{ABCD}=AB\times BC=\sqrt{3}\times1=\sqrt{3}\left(cm^2\right)\)