Cho tam giác ABC nội tiếp đường tròn tâm (O), biết A B C = 45 0 ; B A C = 60 0
Tính số đo của A B ⏜
A. 150 °
B. 90 °
C. 120 °
D. 210 °
Cho tam giác abc có ba góc nhọn nội tiếp đường tròn tâm O kẻ đường thẳng (d) tiếp tuyến với đường tròn tâm O(với C là tiếp điểm ) AH, BK là đường cao của tam giác ABC a) Chứng minh tứ giác AKHB nội tiếp b) Chứng minh KHvuông góc với OC2)từ A,H,B,K lần lượt kẻ các đường thẳng song song với OC cắt đường thẳng (d) theo thứ tự là M,N,E,F:a)chứng minh góc CAH = góc CEK b) chưng minh EF=MN
Lời giải:
a)
Theo tính chất tiếp tuyến thì
Do đó tứ giác nội tiếp.
b) Vì nên (hai góc đồng vị)
Mặt khác theo tính chất hai tiếp tuyến cắt nhau ta dễ thấy là đường phân giác của góc
Do đó:
Từ
cho tam giác nhọn ABC nội tiếp đường tròn tâm O. M là điểm chính giữa cung BC không chứa điểm A. Gọi M' là điểm đối xứng với M qua O. Các đường phân giác trong góc B và góc C của tam giác ABC cắt đường thẳng AM' lần lượt tại E và F.
1/Chứng minh tứ giác BCEF nội tiếp được trong đường tròn
2/Biết đường tròn nội tiếp tam giác ABC có tâm I bán Kính r.
Chứng Minh: IB.IC = 2r.IM
Cho tam giác ABC có A=75 , C=45 và AC=a\(\sqrt{2}\) . Vẽ đường cao AK
a, Tính AB , KC theo a
b, Gọi H là trực tâm của tam giác ABC và O là tâm đường tròn ngoại tiếp tam giác ABC . Tính OHC
c, Gọi I là tâm đt nội tiếp tam giác ABC . Tính bán kính đt ngoại tiếp tam giác HOT theo a
CHO tam giác ABC có 3 góc nhọn (AB<AC) NỘI TIẾP tam giác đường tròn (o) gọi H là trực tâm và M, N, P lần lượt là chân đường cao kẻ từ các đỉnh A, B, C của tam giác ABC.
a) CM:các tứ giác APHN và BPNC nội tiếp
b) CM; H LÀ tâm đường tròn nội tiếp tam giác MNP
VẼ hình hộ mk vs ạ
Cho tam giác ABC nội tiếp với đường tròn (O) , đường phân giác góc B^và C^ cắt đường tròn (O) tại D , E. Dựng đường tròn tâm D tiếp xúc với cạnh AC, đường tròn tâm E tiếp xúc với cạnh AB. Chứng minh rằng tâm của đường tròn nội tiếp tam giác ABC nằm trên tiếp tuyến chung của hai đường tròn (D) và (E).
Cho tam giác ABC có góc A=600.Các điểm O,I lần lượt là tâm đường tròn ngoại tiếp,nội tiếp tam giác.Chứng minh rằng bốn điểm B,O,I,C cùng thuộc một đường tròn.
Câu hỏi của Lê Thanh Bình - Toán lớp 9 - Học toán với OnlineMath
bạn tham khảo
cho tam giác abc nội tiếp đường tròn (o), I là tâm đường tròn nội tiếp tam giác abc. AI cắt (o) tại M, c/m tam giác MIB cân
Cho tam giác ABC có các góc là góc nhọn và nội tiếp đường tròn tâm (O). Tiếp tuyến của đường tròn tâm (O) tại B,C cắt nhau tại D
a) Chứng minh OCDB nội tiếp
b) Gọi H là trực tâm của tam giác ABC. M là trung điểm của BC
Chứng minh AH=2OM
a) Xét tứ giác OCDB có
\(\widehat{OBD}+\widehat{OBC}=180^0\)
Do đó: OCDB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Cho tam giác ABC nội tiếp đường tròn tâm O, có góc C=450. Đường tròn đường kính AB cắt các cạnh AC và BC lần lượt ở M và N.
a. Chứng minh rằng MN vuông góc với OC
b. Cho AB=2a. Tính MN