so sánh A =332-1; B=(3+1).(32+1).(34+1).(38+1).(316+1)
1. Cho A = \(\dfrac{10^{2013}+1}{10^{2014}+1}\) và B = \(\dfrac{10^{2014}+1}{10^{2015}+1}\). Hãy so sánh A và B
2. so sánh ; 2\(^{332}\) và 3\(^{223}\)
2)Ta có: \(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)
\(3^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\)
Vì \(8^{111}< 9^{111}\) mà \(2^{332}< 8^{111},3^{223}>9^{111}\) nên suy ra \(2^{332}< 3^{223}\)
Vậy \(2^{332}< 3^{223}\)
1) \(A=\dfrac{10^{2013}+1}{10^{2014}+1}\Rightarrow10A=\dfrac{10^{2014}+10}{10^{2014}+1}=\dfrac{10^{2014}+1}{10^{2014}+1}+\dfrac{9}{10^{2014}+1}=1+\dfrac{9}{10^{2014}+1}\)
\(B=\dfrac{10^{2014}+1}{10^{2015}+1}\Rightarrow10B=\dfrac{10^{2015}+10}{10^{2015}+1}=\dfrac{10^{2015}+1}{10^{2015}+1}+\dfrac{9}{10^{2015}+1}=1+\dfrac{9}{10^{2015}+1}\)Vì: \(10^{2014}+1< 10^{2015}+1\Rightarrow\dfrac{9}{10^{2014}+1}>\dfrac{9}{10^{2015}+1}\Rightarrow1+\dfrac{9}{10^{2014}+1}>1+\dfrac{9}{10^{2015}+1}\)
Nên suy ra \(10A>10B\Rightarrow A>B\)
So sánh : A= 2332 ;B=3223
Ta có:\(2^{332}<2^{333}=2^{3.111}=\left(2^3\right)^{111}=8^{111}\)
\(3^{223}>3^{222}=3^{2.111}=\left(3^2\right)^{111}=9^{111}\)
Vì \(8^{111}<9^{111}\)nên \(2^{333}<3^{222}nên2^{332}<3^{223}\)
So sánh 2\(^{332}\) và 3\(^{223}\)
So sánh \(2^{332}\) và \(2^{223}\)
So sánh : 5^332 và 3^501
5332= (52)166 =25166 < 27166 = (33)166 = 3498< 3501
=> 5332 < 3501
Vậy 5332 < 3501
5332=(52)166=25166
3501=(33)167=27167
=>5332<3501
so sánh 2^332 và 3^223
2332< 2333=(23)111=8111
3223>3222=(32)111=9111
mà 8<9
=> 2332<3223
đúng tk cho mik
Ta có: 2332 = 2330+2 = 2330 .22 = (23)110.4= 8110 . 4
3223 = 3220+3 = 3220 . 33 =(32)110 . 27=9110 . 27
Vì 8<9 , 4<27 => 8110< 9110
=> 8110 . 4 < 9110 . 27
=> 2332 < 3223
So sánh
a) 3^400 và 9^200
b) 2^332 và 3^223
a) 3400 =32.200 =9200 vậy 3400 = 9200
b) 2332 < 2333 mà 2333 = 23.111 = 8111
3233 > 3222 mà 3222 = 32.111 = 9111
mà 8 < 9
=> 2332 < 3223
So sánh phân số 111/332 và 166/499
Ta có:\(\frac{111}{332}\)>\(\frac{111}{333}\)=\(\frac{1}{3}\)\(\Rightarrow\)\(\frac{111}{332}\)>\(\frac{1}{3}\)
\(\frac{166}{499}\)<\(\frac{166}{498}\)=\(\frac{1}{3}\)\(\Rightarrow\)\(\frac{166}{499}\)<\(\frac{1}{3}\)
\(\Rightarrow\)\(\frac{111}{332}\)>\(\frac{166}{499}\)
Vậy\(\frac{111}{332}\)>\(\frac{166}{499}\)
So sánh
2^332 và 3^223
so sánh 2^223 và 3^332