Cho △ABC vuông tại A, kẻ AE⊥BC ( E ∈ BC); EI⊥AB ( I ∈ AB); (EJ⊥AC). Cho AE=3cm,BC=25/4cm.
Tính diện tích △ABC và tứ giác AIEJ
MỌI NGƯỜI GIÚP MÌNH VỚII
Cho △ABC vuông tại A, kẻ AE⊥BC ( E ∈ BC); EI⊥AB ( I ∈ AB); (EJ⊥AC). Cho AE=3cm,BC=25/4cm.
Tính diện tích △ABC và tứ giác AIEJ
MỌI NGƯỜI GIÚP MÌNH VỚII
tam giác ABC vuông cân tại A , D thuộc AB , E thuộc AC sao cho AD = AE . Qua D và A kẻ các đường thẳng vuông góc với BE cắt BC lần lượt tại I và K . CM IK = KCtam giác ABC vuông cân tại A , D thuộc AB , E thuộc AC sao cho AD = AE . Qua D và A kẻ các đường thẳng vuông góc với BE cắt BC lần lượt tại I và K . CM IK = KCtam giác ABC vuông cân tại A , D thuộc AB , E thuộc AC sao cho AD = AE . Qua D và A kẻ các đường thẳng vuông góc với BE cắt BC lần lượt tại I và K . CM IK = KC
Cho tam giác ABC vuông tại A (AB < AC) kẻ AK vuông góc với BC tại K. Trên cạnh AC lấy điểm E sao cho AE = AB, từ E kẻ EF vuông với BC tại F .Chứng minh tam giác KAF vuông cân.
Cho △ ABC vuông tại A ,tia phân giác của góc B cắt AC tại D kẻ DE vuông góc BC (E ∈ BC). Chứng minh △ BAD = △ BED
Cho △ ABC vuông tại A ,tia phân giác của góc B cắt AC tại D kẻ DE vuông góc BC (E ∈BC)
a) Chứng minh △BAD=△BED
b) Chứng minh BD là đường trung trực của đoạn thẳng AE
c) Gọi F là giao điểm của hai đường thẳng AB và DE . Chứng minh AE // FC
cho tam giác abc cân tại a biết ab=ac=5cm và bc=8cm. Dựng AH vuông góc với BC tại H. Kẻ AE vuông góc với AB tại E và kẻ AF vuông góc với AC tại F. chứng minh EF // BC
Cho tam giác ABC vuông tại C, có góc A=60 độ, Tia phân giác của góc BAC cắt BC tại E, kẻ EK vuông góc với AB ( K thuộc AB ), kẻ BD vuông góc với AE( D thuộc AE )
a)C/m AK=KB
b)C/m AD=BC
1 . Cho tam giác ABC cân tại A , góc A = \(120^o\) , BC= 6cm . Đường vuông góc với AB tại A cắt BC ở D . Tính độ dài BD
2 . Cho tam giác ABC vuông cân tại A , đường trung tuyến AM . Trên BC lấy E , kẻ BH vuông góc với AE tại H , kẻ CK vuông góc với AE tại K . Chứng minh tam giác MHK vuông cân
Kẻ đường cao AH ; Vì \(\Delta\)ABC cân
=> H là trung điểm BC
Xét \(\Delta\)ABC cân tại A có ^A = 120\(^o\)
=> ^ABH = ^ACH = 30\(^o\)
=> ^BAH = 60 \(^o\)
Lấy A' đối xứng với A qua H; BH vuông góc AA'; H là trung điểm AA'
=> \(\Delta\)ABA' cân tại B mà ^BAA' = ^BAH = 60\(^o\)
=> \(\Delta\)ABA' đều .
Đặt: AB = x => AA' = x => AH = x/2
+) \(\Delta\)ABH vuông tại H => BH\(^2\)= AB\(^2\)- AH\(^2\)= \(x^2-\frac{x^2}{4}=\frac{3x^2}{4}\)
=> \(BH=\frac{\sqrt{3}x}{2}\)
=> \(BC=2BH=\sqrt{3}x=\sqrt{3}AB\)
( Như vậy chúng ta có nhận xét: Cho \(\Delta\)ABC cân tại A; ^A = 120\(^o\)=> \(BC=\sqrt{3}AB\))
=> \(AC=AB=\frac{BC}{\sqrt{3}}=\frac{6}{\sqrt{3}}\)
+) Xét \(\Delta\)ABD vuông tại A có: ^ABD = ^ABH = 30 \(^o\)=> ^ADB = 60\(^o\)
=> ^ADC = 180\(^o\)- ^ADB = 180\(^o\)- 60 \(^o\)= 120\(^o\)
Mà ^BAC = 120\(^o\); ^BAD = 90\(^o\)
=> ^DAC = 120\(^o\)- 90 \(^o\)= 30\(^o\)
+) Xét \(\Delta\)DAC có: ^DAC = 30\(^o\); ^ADC = 120\(^o\) => ^DCA = 30\(^o\)
=> \(\Delta\)DAC cân tại D và có: ^ADC = 120\(^o\). Theo nhận xét in đậm ở trên: \(AC=\sqrt{3}.DC\)
=> \(DC=\frac{AC}{\sqrt{3}}=\frac{\frac{6}{\sqrt{3}}}{\sqrt{3}}=\frac{6}{3}=2\)
=> \(BD=BC-DC=6-2=4cm\)
Cho tam giác ABC vuông tại A ( AB>AC). Kẻ p/g BD, kẻ DH vuông góc BC. Trên AC lấy E sao cho AE=AB. Đường vuông góc với AE tại E cắt DH tại K. CMR: góc DBK= 45 độ
cho tam giác ABC vuông tại A, tia phân giác góc B cắt AC tại D. Kẻ AE vuông góc BD(E thuộc cạnh BD), AE cắt BC ở K. Kẻ AH vuông góc BC( H thuộc BC). gọi I là giao điểm của AH và BD. Chứng minh tứ giác IKDA là hình thoi
Xét \(\Delta ABK\),ta có: BE là phân giác \(\angle ABK,BE\bot AK\)
\(\Rightarrow\Delta ABK\) cân tại B \(\Rightarrow BE\) là trung trực AK
Xét \(\Delta ABD\) và \(\Delta KBD:\) Ta có: \(\left\{{}\begin{matrix}AB=BK\\BDchung\\\angle ABD=\angle KBD\end{matrix}\right.\)
\(\Rightarrow\Delta ABD\sim\Delta KBD\left(c-g-c\right)\Rightarrow\angle BKD=\angle BAD=90\)
Ta có: \(\angle BAD+\angle BKD=90+90=180\Rightarrow BAKD\) nội tiếp
\(\Rightarrow\angle AKD=\angle ABD=\angle KBD=\angle KAH\left(=90-\angle BKA\right)\)
\(\Rightarrow\)\(AI\parallel KD\)
Vì \(I\in BE\Rightarrow IA=IK\Rightarrow\Delta IAK\) cân tại I \(\Rightarrow\angle IKA=\angle IAK\)
BADK nội tiếp \(\Rightarrow\angle KAD=\angle KBD=\angle ABD=\angle AKD\)
\(\Rightarrow\angle IKA=\angle DAK\Rightarrow\)\(IK\parallel AD\Rightarrow AIKD\) là hình bình hành
mà \(IA=IK\Rightarrow IKDA\) là hình thoi