Cho a,b,c ≠0 thảo mãn a+b+c=\(\sqrt{\text{2019}}\);\(\dfrac{\text{1}}{\text{a}}\)+\(\dfrac{\text{1}}{\text{b}}\)+\(\dfrac{\text{1}}{\text{c}}\)=0
Tính A=\(a^2+b^2+c^2\)
Cho a,b,c>0 thỏa mãn a+b+c=2019
Chứng minh rằng \(\frac{a}{a+\sqrt{2019a+bc}}+\frac{b}{b+\sqrt{2019b+ac}}+\frac{c}{c+\sqrt{2019c+ab}}\le1\)
Ta có: \(2019a+bc=a\left(a+b+c\right)+bc=\left(a+b\right)\left(c+a\right)\ge\left(\sqrt{ab}+\sqrt{ac}\right)^2\)
\(\Rightarrow a+\sqrt{2019a+bc}\ge a+\sqrt{ab}+\sqrt{bc}=\sqrt{a}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
\(\Rightarrow\frac{a}{a+\sqrt{2019a+bc}}\le\frac{a}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}=\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
Tương tự cộng vào suy ra điều phải chứng minh
Cho a,b,c là các số dương thỏa mãn \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}=\sqrt{2019}\)
CMR: \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\sqrt{\frac{2019}{8}}\)
\(VT\ge\dfrac{a^2}{\sqrt{2\left(b^2+c^2\right)}}+\dfrac{b^2}{\sqrt{2\left(a^2+c^2\right)}}+\dfrac{c^2}{\sqrt{2\left(a^2+b^2\right)}}\)
Đặt \(\left(\sqrt{b^2+c^2};\sqrt{c^2+a^2};\sqrt{a^2+b^2}\right)=\left(x;y;z\right)\Rightarrow x+y+z=\sqrt{2019}\)
\(\Rightarrow\left\{{}\begin{matrix}a^2=\dfrac{y^2+z^2-x^2}{2}\\b^2=\dfrac{x^2+z^2-y^2}{2}\\c^2=\dfrac{x^2+y^2-z^2}{2}\end{matrix}\right.\) \(\Rightarrow2\sqrt{2}VT\ge\dfrac{y^2+z^2-x^2}{x}+\dfrac{z^2+x^2-y^2}{y}+\dfrac{x^2+y^2-z^2}{z}\)
\(\Rightarrow2\sqrt{2}VT\ge\dfrac{y^2+z^2}{x}+\dfrac{z^2+x^2}{y}+\dfrac{x^2+y^2}{z}-\left(x+y+z\right)\)
\(2\sqrt{2}VT\ge\dfrac{\left(y+z\right)^2}{2x}+\dfrac{\left(z+x\right)^2}{2y}+\dfrac{\left(x+y\right)^2}{2z}-\left(x+y+z\right)\)
\(2\sqrt{2}VT\ge\dfrac{4\left(x+y+z\right)^2}{2x+2y+2z}-\left(x+y+z\right)=x+y+z=\sqrt{2019}\)
\(\Rightarrow VT\ge\dfrac{\sqrt{2019}}{2\sqrt{2}}=\sqrt{\dfrac{2019}{8}}\) (đpcm)
Cho \(a,b,c\in R\)
Thảo mãn : \(\left|a\right|\le1;\left|b\right|\le1;\left|c\right|\le1\) và a+b+c=0
Chứng minh: \(a^{2018}+b^{2019}+c^{2020}\le2\)
cho a,b,c>0 thỏa mãn a+b+c=1
Cm: \(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c}\text{≤ \sqrt{6}}\)
cho a,b,c>0 thỏa mãn a+b+c=1
cm: \(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\text{≤}\sqrt{6}\)
Cho a,b>0 thỏa mãn \(\frac{1}{a}+\frac{1}{b}=\frac{1}{2019}\)
CM \(\sqrt{a+b}=\sqrt{a-2019}+\sqrt{b-2019}\)
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{2019}< =>\frac{2019}{a}+\frac{2019}{b}=1< =>\frac{2019}{b}=\frac{a-2019}{a}=>a-2019=\frac{2019a}{b}.\)
tương tự \(b-2019=\frac{2019b}{a}\)
=> \(\sqrt{a-2019}+\sqrt{b-2019}=\sqrt{\frac{2019a}{b}}+\sqrt{\frac{2019b}{a}}=\sqrt{2019}\left(\frac{a+b}{\sqrt{ab}}\right)\)(1)
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{2019}=>ab=2019\left(a+b\right)\)thay vào (1) ta được
\(\sqrt{2019}\left(\frac{a+b}{\sqrt{2019\left(a+b\right)}}\right)=\sqrt{a+b}\)(chứng minh xong)
Cho a, b, c là các số dương thỏa mãn \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}=\sqrt{2019}\)
CMR : \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\sqrt{\frac{2019}{8}}\)
Cho a,b,c là các số dương thỏa mãn \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}=\sqrt{2019}\)
CMR: \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\sqrt{\frac{2019}{8}}\)
Cho ba số a,b,c khác 0 thảo mãn :a+b+c=0. Tính giá trị biểu thức :
P= \(\frac{1}{a^2+b^2-c^2}+\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}\)
Ta có:\(a+b+c=0\Rightarrow a+b=-c\Rightarrow\left(a+b\right)^2=\left(-c\right)^2\)
\(\Rightarrow a^2+b^2+2ab=c^2\Rightarrow a^2+b^2-c^2=-2ab\)
Tươmg tự ta cũng có:\(b^2+c^2-a^2=-2bc\) và \(c^2+a^2-b^2=-2ca\)
\(\Rightarrow P=\frac{1}{-2ab}+\frac{1}{-2bc}+\frac{1}{-2ca}=-\frac{1}{2}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=-\frac{1}{2}\left(\frac{a+b+c}{abc}\right)=0\)
a+b+c=0 => a= -(b+c) TƯƠNG TỰ
b= -(a+c) ; c= -(b+a)
ta co P= \(\frac{1}{\left(b+c\right)^2+\left(b^2-c^2\right)}+\frac{1}{\left(a+c\right)^2+\left(a^2-c^2\right)}+\frac{1}{\left(b+a\right)^2+\left(b^2-a^2\right)}\)
=> P= \(\frac{1}{2c\left(b+c\right)}+\frac{1}{2b\left(a+c\right)}+\frac{1}{2a\left(b+c\right)}\)
thay b+c=-a; a+c=-b ; a+b=-c (như trên )
=> P= \(\frac{1}{-2ac}+\frac{1}{-2ab}+\frac{1}{-2bc}\)
QUY ĐONG CAC MAU THUC TA CO
P= \(\frac{a+b+c}{-2abc}\)
a+b+c=0 => P=0