Cho △\(ABC\) nhọn ( AB < AC ), hai đường cao BE và CF cắt nhau tại H.
a) Chứng minh: 4 điểm \(B,C,F,E\) cùng thuộc một đường tròn. Xác định tâm \(O\) của đường tròn đó.
b) Tia AH cắt cạnh BC tại D. Gọi G là giao điểm của EF và BC. Chứng minh: \(\hat{HFD}=\hat{HBD}\) và \(GE.GF=GD.GO\).