Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vellay Thảo Nguyễn
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 12 2017 lúc 12:13

Biến đổi vế trái:

Để học tốt Toán 9 | Giải bài tập Toán 9

= (-√7 - √5)(√7 - √5)

= -(√7 + √5)(√7 - √5)

= -(7 - 5) = -2 = VP (đpcm)

Để học tốt Toán 9 | Giải bài tập Toán 9

= (1 + √a)(1 - √a)

= 1 - (√a)2 = 1 - a = VP (đpcm)

Aura Phạm
Xem chi tiết
Đinh Đức Hùng
5 tháng 2 2018 lúc 17:42

a) Áp dụng bất đẳng thức AM-GM : 

\(\left(a^2+b^2\right)\left(a^2+1\right)\ge2\sqrt{a^2b^2}.2\sqrt{a^2}\ge2ab.2a=4a^2b\)

b) Áp dụng bất đẳng thức :\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\forall x;y>0\)

 \(\frac{1}{a+3b}+\frac{1}{b+2c+a}\ge\frac{4}{a+3b+b+2c+a}=\frac{4}{2a+4b+2c}=\frac{2}{a+2b+c}\)

Tương tự \(\hept{\begin{cases}\frac{1}{b+3c}+\frac{1}{c+2a+b}\ge\frac{2}{b+2c+a}\\\frac{1}{c+3a}+\frac{1}{a+2b+c}\ge\frac{2}{b+2a+c}\end{cases}}\)

Cộng vế với vế ta được : \(VT+VP\ge2VP\Rightarrow VT\ge VP\)(đpcm)

ngoc lan
Xem chi tiết
Mạnh Hùng Phan
15 tháng 4 2019 lúc 21:13

1. (a+b)^2 ≥ 4ab

<=> a2+2ab+b2≥ 4ab

<=> a2+2ab+b2-4ab≥ 0

<=> a2-2ab+b2≥ 0

<=> (a-b)^2 ≥ 0 ( luôn đúng )

Mạnh Hùng Phan
15 tháng 4 2019 lúc 21:18

2. a^2 + b^2 + c^2 ≥ ab + bc + ca

<=> 2a^2 + 2b^2 + 2c^2 ≥ 2ab + 2bc + 2ca

<=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca ≥ 0

<=> (a^2- 2ab+b^2) + (b^2-2bc+c^2) + (c^2-2ca+a^2) ≥ 0

<=> (a-b)^2 + (b-c)^2 + (c-a)^2 ≥ 0 ( luôn đúng)

Mạnh Hùng Phan
15 tháng 4 2019 lúc 21:20

4. Tương tự 3

Học nữa học mãi
Xem chi tiết
Lê Chí Công
6 tháng 6 2016 lúc 21:04

Cau 9

(a+1)2=a2+2a+1  

Mà a2+1 >hoặc=4a[Bất đẳng thức Cô-si

Suy ra  2a+4a>hoac=4a

Vay.....

Diệu Anh Hoàng
Xem chi tiết
Trần Việt Anh
9 tháng 3 2019 lúc 19:15

(a^2+b^2)/2>=ab

<=>(a^2+b^2)>=2ab

 <=> a^2+2ab+b^2>=2ab 

<=>a^2+b^2>=0(luôn đúng)

=> điều phải chứng minh.

Không Tên
9 tháng 3 2019 lúc 19:16

Xét hiệu:  \(a^2+b^2-2ab=\left(a-b\right)^2\ge0\)

=>  \(a^2+b^2\ge2ab\)

Dấu "=" xra  <=>  a = b

Áp dụng ta có:

a)  \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\)

dấu "=" xra  <=>  a = b = c = 1

b)  \(\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\left(d^2+4\right)\ge4a.4b.4c.4d=256abcd\)

Dấu "=" xra  <=>  a = b= c = d = 2

Trần Việt Anh
9 tháng 3 2019 lúc 19:18

a) Áp dụng bđt AM-GM ta có:

\(\hept{\begin{cases}a^2+1\ge2a\\b^2+1\ge2b\\c^2+1\ge2c\end{cases}}\)

nhân theo 3 vế BDDT ta đc:

( a^2+1) (b^2+1)(c^2+1) >= 2a.2b.2c = 8abc

"=" <=> a=b=c

Trần Ngọc Hoàng
Xem chi tiết
nguyễn thị huyền trang
23 tháng 10 2016 lúc 21:38

bài 5 nhé:

a) (a+1)2>=4a

<=>a2+2a+1>=4a

<=>a2-2a+1.>=0

<=>(a-1)2>=0 (luôn đúng)

vậy......

b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:

a+1>=\(2\sqrt{a}\)

tương tự ta có:

b+1>=\(2\sqrt{b}\)

c+1>=\(2\sqrt{c}\)

nhân vế với vế ta có:

(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)

<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)

<=>(a+)(b+1)(c+1)>=8 (vì abc=1)

vậy....

Thái Viết Nam
23 tháng 10 2016 lúc 14:42

bạn nên viết ra từng câu

Chứ để như thế này khó nhìn lắm

nguyen van bi
7 tháng 12 2020 lúc 19:20

bạn hỏi từ từ thôi

Khách vãng lai đã xóa
Dương Thị Thu Hiền
Xem chi tiết
Dương Thị Thu Hiền
Xem chi tiết