Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
fan FA
Xem chi tiết
Huỳnh Quang Sang
4 tháng 7 2018 lúc 20:57

Nhận xét: với a, b nguyên , n nguyên dương ta có: 
aⁿ và a cùng tính chẳn, lẻ ; 
với x là số lẻ thì a.xⁿ và a cùng tính chẳn lẻ 
và do đó, với x là số lẻ ta có: 
a.xⁿ + b.x^(x-1) cùng tính chẳn lẻ với a+b 
Tổng quát: với x là số nguyên lẻ, n nguyên dương, a, b, c,... nguyên ta có: 
a.xⁿ + b.x^(x-1) +...+ cx cùng tính chẳn lẻ với a+b+..+c 
- - - - - - 
Đặt: f(x) = a.xⁿ + b.x^(x-1) + ...+ c.x + d 
có f(0) = d lẻ (do giả thiết) 
f(1) = a+b+..+ c +d lẻ => a+b+..+c chẳn với x nguyên tuỳ ý ta có hai trường hợp: 
nếu x chẳn thì: a.xⁿ + b.x^(n-1) +..+cx chẳn => f(x) lẻ (do d lẻ) 
nếu x lẻ thì từ nhận xét trên có: a.xⁿ + b.x^(n-1) +..+cx chẳn (do a+b+..+c chẳn) 
=> f(x) lẻ 

Tóm lại có f(x) là số lẻ với mọi x nguyên => f(x) # 0 với mọi x nguyên 
=> f(x) không có nghiệm nguyên 

_Bùi Thanh Thảo_
14 tháng 8 2018 lúc 14:59

Nhận xét: với a, b nguyên , n nguyên dương ta có: 
aⁿ và a cùng tính chẳn, lẻ ; 
với x là số lẻ thì a.xⁿ và a cùng tính chẳn lẻ 
và do đó, với x là số lẻ ta có: 
a.xⁿ + b.x^(n-1) cùng tính chẳn lẻ với a+b 
tổng quát: với x là số nguyên lẻ, n nguyên dương, a, b, c,... nguyên ta có: 
a.xⁿ + b.x^(n-1) +...+ cx cùng tính chẳn lẻ với a+b+..+c 
- - - - - - 
đặt: f(x) = a.xⁿ + b.x^(n-1) + ...+ c.x + d 
có f(0) = d lẻ (do giả thiết) 
f(1) = a+b+..+ c +d lẻ => a+b+..+c chẳn 

với x nguyên tuỳ ý ta có hai trường hợp: 
nếu x chẳn thì: a.xⁿ + b.x^(n-1) +..+cx chẳn => f(x) lẻ (do d lẻ) 
nếu x lẻ thì từ nhận xét trên có: a.xⁿ + b.x^(n-1) +..+cx chẳn (do a+b+..+c chẳn) 
=> f(x) lẻ 

Tóm lại có f(x) là số lẻ với mọi x nguyên => f(x) # 0 với mọi x nguyên 
=> f(x) không có nghiệm nguyên 
~~~~~~~~~~~~

bui thanh thao
14 tháng 8 2018 lúc 15:00

Nhận xét: với a, b nguyên , n nguyên dương ta có: 
aⁿ và a cùng tính chẳn, lẻ ; 
với x là số lẻ thì a.xⁿ và a cùng tính chẳn lẻ 
và do đó, với x là số lẻ ta có: 
a.xⁿ + b.x^(n-1) cùng tính chẳn lẻ với a+b 
tổng quát: với x là số nguyên lẻ, n nguyên dương, a, b, c,... nguyên ta có: 
a.xⁿ + b.x^(n-1) +...+ cx cùng tính chẳn lẻ với a+b+..+c 
- - - - - - 
đặt: f(x) = a.xⁿ + b.x^(n-1) + ...+ c.x + d 
có f(0) = d lẻ (do giả thiết) 
f(1) = a+b+..+ c +d lẻ => a+b+..+c chẳn 

với x nguyên tuỳ ý ta có hai trường hợp: 
nếu x chẳn thì: a.xⁿ + b.x^(n-1) +..+cx chẳn => f(x) lẻ (do d lẻ) 
nếu x lẻ thì từ nhận xét trên có: a.xⁿ + b.x^(n-1) +..+cx chẳn (do a+b+..+c chẳn) 
=> f(x) lẻ 

Tóm lại có f(x) là số lẻ với mọi x nguyên => f(x) # 0 với mọi x nguyên 
=> f(x) không có nghiệm nguyên 
~~~~~~~~~~~~

Nguyễn Thị Minh Nguyệt
Xem chi tiết
Cô Hoàng Huyền
28 tháng 12 2017 lúc 14:33

Câu hỏi của Lê Minh Đức - Toán lớp 9 - Học toán với OnlineMath

Em có thể tham khảo bài tương tự tại đây nhé.

Đỗ Hoàng Lâm
Xem chi tiết
toan bai kho
Xem chi tiết
Le Thi Khanh Huyen
31 tháng 3 2016 lúc 19:03

Ta có:

\(f\left(1\right)=a+b+c\text{⋮7 }\)

\(f\left(2\right)=4a+2b+c⋮7\)

\(\Rightarrow f\left(2\right)-f\left(1\right)=3a+b⋮7\)

\(f\left(3\right)=9a+3b+c=3\left(3a+b\right)+c⋮7\)

Mà \(3a+b⋮7\)

\(\Rightarrow c⋮7\)

Mà \(a+b+c⋮7\)

\(\Rightarrow a+b⋮7\)

Mà \(4a+2b+c⋮7\)

\(\Rightarrow4a+2b=2\left(2a+b\right)⋮7\)

\(2\text{̸ ⋮̸7}\)

\(\Rightarrow2a+b⋮7\)

Mà \(a+b⋮7\)

\(\Rightarrow\left(2a+b\right)-\left(a+b\right)=a⋮7\)

Có \(a⋮7;c⋮7;a+b+c⋮7\)

\(\Rightarrow b⋮7\)

\(f\left(m\right)=am^2+bm+c\)

Như vậy \(\Rightarrow am^2⋮7;bm⋮7;c⋮7\)

\(\Rightarrow a.x^2+bx+c⋮7\)

Do đó với bất kỳ giá trị nào của m nguyên thì f(m)⋮7

Vinh Lê Thành
Xem chi tiết
Do Thi Len
12 tháng 10 lúc 20:20

Câu hỏi của Lê Minh Đức - Toán lớp 9 - Học toán với OnlineMath

Em có thể tham khảo bài tương tự tại đây nhé.

Nguyễn Kiều Trang
Xem chi tiết
Cô Hoàng Huyền
28 tháng 12 2017 lúc 14:32

Câu hỏi của trần manh kiên - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo câu tương tự tại đây nhé.

Trần Bình Minh
Xem chi tiết
Lê Minh Đức
Xem chi tiết
alibaba nguyễn
23 tháng 10 2016 lúc 21:34

Giả sử f(x) có nghiệm nguyên là a, Khi đó f(x)=(x−a)Q(x)
Thay x =1;2 vào biểu thức trên ta được : f(1)=(1−a)Q(1) và f(2)=(2−a)Q(2)

=> f(1).f(2)=(a−1)(a−2)Q(1).Q(2)

Hay 2013=(a−1)(a−2).Q(1)Q(2)

Ta có VT không chia hết cho 2, VP chia hết cho 2 ( vì (a−1)(a−2) chia hết cho 2 )

=> PT vô nghiệm

=> f(x) không có nghiệm nguyên 

Nguyễn Văn Duy
Xem chi tiết
Vương Minh Hiếu
Xem chi tiết
Đoàn Đức Hà
19 tháng 6 2021 lúc 16:16

Giả sử \(f\left(x\right)\)có nghiệm nguyên là \(a\).

Khi đó \(f\left(x\right)=\left(x-a\right)g\left(x\right)\)(với \(g\left(x\right)\)là đa thức với các hệ số nguyên) 

\(f\left(1\right)=\left(1-a\right)g\left(1\right)\)là số lẻ nên \(1-a\)là số lẻ suy ra \(a\)chẵn. 

\(f\left(2\right)=\left(2-a\right)g\left(2\right)\)là số lẻ nên \(2-a\)là số lẻ suy ra \(a\)lẻ. 

Mâu thuẫn. 

Do đó \(f\left(x\right)\)không có nghiệm nguyên. 

Khách vãng lai đã xóa