Cho 2 đa thức \(f\left(x\right)\)và \(g\left(x\right)\)có hệ số nguyên thỏa mãn \(f\left(x^3\right)+g\left(x^3\right)⋮x^2-x+1\)
Chứng minh: \(\hept{\begin{cases}f\left(x\right)\\g\left(x\right)\end{cases}⋮}x+1\)
Cho các số a, b, c nguyên dương, phân biệt sao cho :
\(\hept{\begin{cases}a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2⋮a+b\\a+b\in P\end{cases}}\)(P là tập hợp số nguyên tố)
Chứng minh rằng : a, b, c không là độ dài 3 cạnh tam giác.
cho hàm số fn) thỏa
\(\hept{\begin{cases}f\left(1\right)=f\left(2\right)=1;f\left(3\right)=2\\f\left(n+1\right)=\frac{f\left(n\right)+f\left(n-1\right)}{F\left(n-2\right)}\end{cases}}\)tính f(20) và f(25), lập quy trình bấm phím liên tục
Đây là một số câu hỏi ở cuộc thi Toán Hà Nội mở rộng. Cách giải qua loa quá mình không hiểu. Các bạn giúp mình.
Câu 1 : Cho \(f\left(x\right)=ax^2+bx+c\)
\(\hept{\begin{cases}\cdot\left|x\right|\le1\Leftrightarrow\left|f\left(x\right)\right|\le1\\\cdot\left|x\right|\ge2\Leftrightarrow\left|f\left(x\right)\right|\ge7\end{cases}}\)
Tìm a ; b ; c.
Câu 2 : Cho a , b , c là các số thực dương thỏa mãn \(abc=1\)
Chứng minh rằng \(\frac{a-1}{c}+\frac{c-1}{b}+\frac{b-1}{a}\ge0\)
a) CMR nếu \(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-zx\right)}\)với x khác y , xyz khác 0 , yz khác 1 , xz khác 1 m thì xy+xz+yz= xyz(x+y+z)
:b) Cho a, b , c là các số thực khác 0 và thỏa mãn :
\(\hept{\begin{cases}a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)+2abc=0\\a^{2017}+b^{2017}+c^{2017}=1\end{cases}}\)
Tính giá trị của biểu thức P= \(\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}\)
Nếu a là nghiệm nguyên của đa thức f(x) và f(1), f(-1) khác 0 thì \(\frac{f\left(1\right)}{a-1}\)
và \(\frac{f\left(-1\right)}{a+1}\)
đều là số nguyên.
Cho \(\hept{\begin{cases}a+b+c=3\\a^2+b^2+c^2=5\end{cases}}\)trong đó a, b, c là các số nguyên (Gợi ý ab + bc + ca = 2)
CMR: A = \(\left(a^2+2\right)\left(b^2+2\right)\left(c^2+2\right)\)là bình phương của một số nguyên
Cho \(a,b,c\) là các số thực thỏa mãn \(\hept{\begin{cases}\left(a+b\right)\left(b+c\right)\left(c+a\right)=abc\\\left(a^3+b^3\right)\left(b^3+c^3\right)\left(c^3+a^3\right)=a^3b^3c^3\end{cases}}\)
Chứng minh rằng \(abc=0\)
Cho a, b, c là cá sô thực thỏa mãn \(\hept{\begin{cases}\left(a+b\right)\left(b+c\right)\left(c+a\right)=abc\\\left(a^3+b^3\right)\left(b^3+c^3\right)\left(c^3+a^3\right)=a^3b^3c^3\end{cases}}\)
Chứng minh rằng abc=0