Cmr
(2011^2+11^2)/(2011^2+2000^2) = (2011+11)/(2011+2000)
CMR
(2011^2+11^2)/(2011^2+2000^2) = (2011+11)/(2011+2000)
CMR
(2011^2 +11^2)/(2011^2+200^2) = (2011+11)/(2011+2000)
nó có thể = nhau nếu m viết đúng đề nhưng xin lỗi nhé :) sai đề rồi
CMR: \(\frac{2011^3+11^3}{2011^3+2000^3}=\frac{2011+11}{2011+2000}\)
Đặt 2011 = a ; 11 = b ; 2000 = c
\(\Rightarrow a=b+c\)
Xét vế phải của đẳng thức ta có: \(\frac{2011^3+11^3}{2011^3+2000^3}=\frac{a^3+b^3}{a^3+c^3}=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{\left(a+c\right)\left(a^2-ac+c^2\right)}\)
Thay \(a=b+c\)vào \(a^2-ab+b^2=\left(b+c\right)^2-\left(b+c\right).b+b^2=b^2+bc+c^2\)
Thay \(a=b+c\)vào \(a^2-ac+c^2=\left(b+c\right)^2-\left(b+c\right).c+c^2=b^2+bc+c^2\)
\(\Rightarrow\)\(a^2-ab+b^2=a^2-ac+c^2\)
\(\Rightarrow\) \(\frac{2011^3+11^3}{2011^3+2000^3}=\frac{a^3+b^3}{a^3+c^3}=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{\left(a+c\right)\left(a^2-ac+c^2\right)}=\frac{a+b}{a+c}=\frac{2011+11}{2011+2000}\)
Vậy \(\frac{2011^3+11^3}{2011^3+2000^3}=\frac{2011+11}{2011+2000}\left(đpcm\right)\)
cm
2011^3+11^3/2011^3+2000^3=2011+11/2011+2000
Chứng minh rằng : \(\frac{2011^3+11^3}{2011^3+2000^3}=\frac{2011+11}{2011+2010}\)
2012*2011+2012*11+2000
2013*2011-2011*2012
1 / CMR: \(\dfrac{2011^3+11^3}{2011^3+2000^3}=\dfrac{2011+11}{2011+2000}\)
2 / Cho \(A=\dfrac{x^4+x}{x^2-x+1}-\dfrac{x^4-x}{x^2+x+1}\left(x\in R\right)\)
3 / Xét \(A=\left(\dfrac{a+1}{ab+1}+\dfrac{ab+a}{ab-1}-1\right):\left(\dfrac{a+1}{ab+1}-\dfrac{ab+a}{ab-1}+1\right)\)
a/ rút gọn A
b/ tìn GTNN mà A đạt được biết a + b = 4
Bài 2:
\(A=\dfrac{x\left(x^3+1\right)}{x^2-x+1}-\dfrac{x\left(x^3-1\right)}{x^2+x+1}\)
\(=x\left(x+1\right)-x\left(x-1\right)\)
=x^2+x-x^2+x
=2x
1/ CMR : \(\frac{2011^3+11^3}{2011^3+2000^3}=\frac{2011+11}{2011+2000}\)
2/ Xét \(A=\left(\frac{a+1}{ab+1}+\frac{ab+a}{ab-1}-1\right):\left(\frac{a+1}{ab+1}-\frac{ab+a}{ab-1}+1\right)\)
a/ rút gọn
b/ tìm GTNN mà A đạt được biết a + b = 4
3/ CMR giá trị biểu thức biểnsau ko phụ thuộc vào giá trị của biến
\(\frac{2}{xy}:\left(\frac{1}{x}-\frac{1}{y}\right)^2-\frac{x^2+y^2}{\left(x-y\right)^2}\) khi \(x\ne0;y\ne0;x\ne y\)
\(3,\frac{2}{xy}:\left(\frac{1}{x}-\frac{1}{y}\right)^2-\frac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\frac{2}{xy}:\left[\left(\frac{1}{x}\right)^2-2.\frac{1}{x}.\frac{1}{y}+\left(\frac{1}{y}\right)^2\right]-\frac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\frac{2}{xy}:\left[\frac{1}{x^2}-\frac{2}{xy}+\frac{1}{y^2}\right]-\frac{x^2+y^2}{x^2-2xy+y^2}\)
\(=\frac{2}{xy}:\left[\frac{y^2-2.xy+x^2}{x^2y^2}\right]-\frac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\frac{2}{xy}.\frac{x^2y^2}{x^2-2xy+y^2}-\frac{x^2+y^2}{x^2-2xy+y^2}\)
\(=\frac{2xy}{x^2-2xy+y^2}+\frac{-x^2-y^2}{x^2-2xy-y^2}\)
\(=\frac{2xy-x^2-y^2}{x^2-2xy+y^2}=\frac{-\left(x^2-2xy+y^2\right)}{x^2-2xy+y^2}=-1\)
\(\frac{2011^3+11^3}{2011^3+2000^3}\)
\(=\frac{\left(2011+11\right)\left(2011^2-2011.11+11^2\right)}{\left(2011+2000\right)\left(2011^2-2011.2000+2000^2\right)}\)
\(=\frac{\left(2011+11\right)\left[2011^2-11\left(2011-11\right)\right]}{\left(2011+2000\right)\left[2011^2-2000\left(2011-2000\right)\right]}\)
\(=\frac{\left(2011+11\right)\left(2011^2-11.2000\right)}{\left(2011+2000\right)\left(2011^2-2000.11\right)}\)
\(=\frac{2011+11}{2011+2000}\left(2011^2-11.2000\ne0\right)\)
đpcm
\(A=\left(\frac{a+1}{ab+1}+\frac{ab+a}{ab-1}-1\right):\left(\frac{a+1}{ab+1}-\frac{ab+a}{ab-1}+1\right)\)
\(A=\left[\frac{\left(a+1\right)\left(ab-1\right)+\left(ab+a\right)\left(ab+1\right)-\left(ab+1\right)\left(ab-1\right)}{\left(ab+1\right)\left(ab-1\right)}\right]:\left[\frac{\left(a+1\right)\left(ab-1\right)-\left(ab+a\right)\left(ab+1\right)+\left(ab+1\right)\left(ab-1\right)}{\left(ab+1\right)\left(ab-1\right)}\right]\)\(A=\left[\frac{a^2b-a+ab-1+a^2b^2+ab+a^2b+a-a^2b^2+1}{\left(ab+1\right)\left(ab-1\right)}\right]:\left[\frac{a^2b-a+ab-1-a^2b^2-ab-a^2b-a+a^2b^2-1}{\left(ab+1\right)\left(ab-1\right)}\right]\)\(A=\left[\frac{2a^2b+2ab}{\left(ab+1\right)\left(ab-1\right)}\right]:\left[\frac{2a^2b-2a}{\left(ab+1\right)\left(ab-1\right)}\right]\)
\(A=\left[\frac{2ab\left(a+1\right)}{\left(ab+1\right)\left(ab-1\right)}\right]:\left[\frac{2a\left(ab-1\right)}{\left(ab+1\right)\left(ab-1\right)}\right]\)
\(A=\left[\frac{2ab\left(a+1\right)}{\left(ab+1\right)\left(ab-1\right)}\right]:\left[\frac{2a}{\left(ab+1\right)}\right]\left(ab-1\ne0\right)\)
\(A=\frac{b\left(a+1\right)}{ab-1}\left(ab+1\ne0;2a\ne0\right)\)
2012 x 2011 + 2012 x 11 + 2000
2013 x 2011- 2011 x 2012