tìm hai số x và y biết \(\frac{x}{2}=\frac{y}{5}\)va x+y=-21
Tìm hai số x và y,biết \(\frac{x}{2}\)=\(\frac{y}{5}\)và x + y = -21
Theo bài ra , ta có :
\(\frac{x}{2}=\frac{y}{5}\)
và x + y = -21
Áp dụng công thức tỉ lệ thức bằng nhau :
=) \(\frac{x}{2}=\frac{y}{5}\) = \(\frac{x+y}{2+5}=\frac{-21}{7}=-3\)
\(\frac{x}{2}=-3\Rightarrow x=-3.2=-6\)\(\frac{y}{5}=-3\Rightarrow y=-3.5=-15\)Vậy x = -6 và y = -15bạn vận dụng tính chất dãy tỉ số bắng nhau í
Ta có: \(\frac{x}{2}=\frac{y}{5}\)và \(x+y=-21\)
\(\Rightarrow\frac{x+y}{2+5}=\frac{-21}{7}=-3\)
Ta có: \(\frac{x}{2}=-3\Rightarrow x=-6\)
\(\frac{y}{5}=-3\Rightarrow y=-15\)
Chúc bn hx tốt
tìm 2 số x và y biết : \(\frac{x}{2}=\frac{y}{5}\) và x+y=21
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{2}\) + \(\frac{y}{5}\) = \(\frac{x+y}{2+5}\) = \(\frac{21}{7}\) = 3
Ta có:
\(\frac{x}{2}\) = 3 => x = 3 . 2 = 6
\(\frac{y}{5}\) = 3 => y = 3 . 5 = 15
Vậy x = 6 , y = 15
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{21}{7}=3\)
\(\frac{x}{2}=3\Rightarrow x=2.3=6\)\(\frac{y}{5}=3\Rightarrow y=3.5=15\)Vậy: \(x=6,y=15\)
áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}\) = \(\frac{y}{5}\) = \(\frac{x+y}{2+5}\) = \(\frac{21}{7}\) = 3
\(\Rightarrow\) \(\frac{x}{2}\) = 3 \(\Rightarrow\) x = 6
\(\Rightarrow\) \(\frac{y}{5}\) = 3 \(\Rightarrow\) y = 15
1.
Tìm 2 số x và y biết: \(\frac{x}{2}=\frac{y}{5}\) và x + y = -21
2.
Tìm 2 số x và y biết: 7x = 3y và x - y = 16
ÁP dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{7}=\frac{-21}{7}=-3\)
\(\Leftrightarrow\frac{x}{2}=-3\Leftrightarrow x=-6\)
\(\Leftrightarrow\frac{y}{5}=-3\Leftrightarrow y=-15\)
câu b tương tự
\(\frac{x}{2}=\frac{y}{5}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{-21}{7}=-3\)
\(\Rightarrow\hept{\begin{cases}x=-3\cdot2=-6\\y=-3\cdot5=-15\end{cases}}\)
vậy___
tìm hai số x, y biết:
1/ -2x=5y và x+y=30
2/ 3x=5y và x+y=40
3/ 4x=5y và 3x-2y=35
4/ x:2=y:(-5) và x-y=7
5/ \(\frac{x}{19}\)=\(\frac{y}{21}\) và 2x-y=34
1. -2x=5y =>\(\frac{x}{y}=\frac{-5}{2}=>y=\frac{-2x}{5}\)
Thế y=\(\frac{-2x}{5}\) ta được:
x+\(\frac{-2x}{5}\)=30 \(\Rightarrow\frac{5x-2x}{5}=30\)
\(\Rightarrow3x=150\)\(\Rightarrow x=50\)
=>y=30-x=30-50=-20.
Vậy x=50; y=-20.
Những bài khác tương tự bạn nhé!
bạn kia làm đúng rồi
k tui nha
thank
1) Tìm x, biết:
a) x:2=y:5 và x+y=21
b) \(\frac{x}{2}=\frac{y}{2}\)và x.y=54
c) x:7=y:5 và y-x=12
2) Tím các số x, y, z, biết:
a) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\)và 5x+y-2z=28
b) \(\frac{x}{3}=\frac{y}{4}\); \(\frac{y}{5}=\frac{z}{7}\)và 2x+3y-z=124
c) 3x=2y; 7y=5z và x-y+z=32
d) 2x=3x=5z và x+y-z=95
a) x/5=y/2
= x+y/5+2=21/7=3
=> x/5=3=>x=15
y/2=3=>x=6
1) a) => \(\frac{x}{2}=\frac{y}{5}vàx+y=21\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{21}{7}=3\)
* \(\frac{x}{2}=3\Rightarrow x=2\cdot3=6\)
* \(\frac{y}{5}=3\Rightarrow y=3\cdot5=15\)
c) =.> \(\frac{x}{7}=\frac{y}{5}vày-x=12\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{7}=\frac{y}{5}=\frac{y-x}{5-7}=\frac{12}{-2}=-6\)
*\(\frac{x}{7}=-6\Rightarrow x=-6\cdot7=-42\)
*\(\frac{y}{5}=-6\Rightarrow y=-6\cdot5=-30\)
Tìm ba số x, y, z, biết rằng:
\(\frac{x}{2}=\frac{y}{3},\frac{y}{4}=\frac{z}{5}\)và x + y - z = 10
Tìm hai số x, y, biết rằng:
\(\frac{x}{2}=\frac{y}{5}\)và xy = 10
\(dat:\frac{x}{2}=\frac{y}{5}=k\)
x=2k ; y=5k
x.y=10k2
10 = 10k2
k2 = 1
k = +-1
Voi : k=1 = > x=1.2=2 ; y=5.1=5
voi : k=-1 => x=-1.2=-2 ; y=-1.5=-5
\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x}{2}=\frac{4y}{12};\frac{3y}{12}=\frac{z}{5}\Rightarrow\frac{x}{8}=\frac{y}{12};\frac{y}{12}=\frac{z}{15}\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Ap dung tinh chat day ti so bang nhau ta co :
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
Suy ra : \(\frac{x}{8}=2\Rightarrow x=16;\frac{y}{12}=2\Rightarrow y=2.12=24;\frac{z}{15}=2\Rightarrow z=2.15=30\)
nhieu qua lam ko het
2) Tìm ba số x,y,z biết rằng:
\(\frac{x}{2}=\frac{y}{3}\) , \(\frac{y}{4}=\frac{z}{5}\) và x + y - z = 10
3) Tìm hai số x,y biết rằng:
\(\frac{x}{2}=\frac{y}{5}\) và xy = 10
2). Ta có: x/2=y/3 => x/8 = y/12
y/4=z/5 => y/12 = z/15
=> x/2=y/12=z/15 và x+y-z=10
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}\)=\(\frac{y}{12}\)=\(\frac{z}{15}\)=\(\frac{x+y-z}{2+12-15}\)=\(\frac{10}{-1}\)= -10
=> x=2.(-10)=-20
y=12.(-10)=-120
z=15.(-10)=-150
Vậy x=-20; y=-120;z=-150
3). Đặt \(\frac{x}{2}\)=\(\frac{y}{5}\)= k
=> x=2k
y=5k
Ta có xy = 10
2k.5k =10
10. k2=10
k2 = 10 :10=1
=> k =1; k=-1
+) k = 1
=> x=2.1=2
y=5.1=5
+) k = -1
=> x= 2.(-1) =-2
y=5.(-1) = -5
Vậy x=2;y=5 hoặc x=-2;y=-5
Câu 2:
Ta có \(\frac{x}{2}=\frac{y}{3}=\frac{x}{8}=\frac{y}{12}\)(1)
\(\frac{y}{4}=\frac{z}{5}=\frac{y}{12}=\frac{z}{15}\)(2)
Từ (1) và (2) suy ra:\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\Rightarrow\)\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
\(\Rightarrow\begin{cases}\frac{x}{8}=2\\\frac{y}{12}=2\\\frac{z}{15}=2\end{cases}\)\(\Rightarrow\begin{cases}x=16\\y=24\\z=30\end{cases}\)
Vậy x=16;y=24;z=30
Câu 3:
Vì xy=10 nên x,y khác 0
Đặt \(\frac{x}{2}=k\)\(\Rightarrow\)x=2k(1)
\(\frac{y}{5}=k\)\(\Rightarrow\)y=5k2)
Suy ra x.y=2k.5k=10k2
Ta có:x.y=10
Do đó k=1;-1. Thay vào (1) và (2) ta có:
x=2k(Suy ra:x=2;-2)
y=5k(Suy ra:y=5;-5)
Vậy cặp (x;y)là:(2;5)(-2;-5)
tìm x , y biết
\(\frac{x-2}{5}=\frac{y+5}{7}\)và x + y = 21
(x-2)/5=(y+5)/7=(x-2+y+5)/12=(x+y-2+5)/12
=(21-2+5)/12=2
=>(x-2)/5=2=>x=12
=>(y+5)/7=2=>y=9
tìm ba số x,y,z, biết rằng:
\(\frac{x}{2}=\frac{y}{3},\frac{y}{4}=\frac{z}{5}\) và x+y-z=10
tìm hai số x và y, biết rằng:
\(\frac{x}{2}=\frac{y}{5}\) và xy=10
(có lời giải nha, mong các bạn giúp đỡ nhìu ^-^)
Bài I: Từ \(\frac{x}{2}\)=\(\frac{y}{3}\)\(\Rightarrow\)\(\frac{x}{2}\).\(\frac{1}{4}\)=\(\frac{y}{3}\).\(\frac{1}{4}\)\(\Rightarrow\)\(\frac{x}{8}\)=\(\frac{y}{12}\)(1)
Từ \(\frac{y}{4}\)=\(\frac{z}{5}\)\(\Rightarrow\)\(\frac{y}{4}\).\(\frac{1}{3}\)=\(\frac{z}{5}\).\(\frac{1}{3}\)\(\Rightarrow\)\(\frac{y}{12}\)=\(\frac{z}{15}\)(2)
Từ (1) và (2) suy ra \(\frac{x}{8}\)=\(\frac{y}{12}\)=\(\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\frac{x}{8}\)=\(\frac{y}{12}\)=\(\frac{z}{15}\)=\(\frac{x+y-z}{8+12-15}\)=\(\frac{10}{5}\)=2
Do đó:\(x=2.8=16\)
\(y=12.2=24\)
\(z=15.2=30\)
Vậy \(x=16\);\(y=24\);\(z=30\)
Bài II: Đặt \(k=\frac{x}{2}\)=\(\frac{y}{5}\)
\(\Rightarrow\)\(x=2.k\);\(y=5.k\)
Vì \(x.y=10\)nên \(2k.5k=10\)
\(\Rightarrow\)\(10.k^2=10\)
\(\Rightarrow\)\(k^2=1\)
\(\Rightarrow\)\(k=1\)hoặc\(k=-1\)
+) Với \(k=1\)thì \(x=2\);\(y=5\)
+) Với \(k=-1\)thì \(x=-2\);\(y=-5\)
Vậy \(x=2\);\(y=5\)hoặc \(x=-2\);\(y=-5\)
\(\frac{x}{2}=\frac{y}{5}\)và \(xy=10\)
Ta có :
\(\frac{x}{2}=\frac{y}{5}\Leftrightarrow5x=2y\Leftrightarrow x=\frac{2y}{5}\). Thay vào biểu thức x . y = 10 . Ta được :
\(\frac{2y}{5}.y=10\Leftrightarrow\frac{2y^2}{5}=10\Leftrightarrow2y^2=50\Leftrightarrow y^2=25\Leftrightarrow y=5;y=-5\)
Với \(y=5\Rightarrow x=\frac{2.5}{5}=2\)
Với \(y=-5\Rightarrow x=\frac{2.\left(-5\right)}{5}=-2\)