Giải phương trình :
(x^2-9)=60x+25
Giải phương trình f'(x) = 0, biết rằng f ( x ) = 3 x + 60 x - 64 x 3 + 5
Giải phương trình : 3x2+60x-900=0
\(3x^2+50x-800=0\Leftrightarrow3\left(x^2+\frac{50}{3}x-\frac{800}{3}\right)=0\)
\(\Leftrightarrow3\left(x^2-10x+\frac{80}{3}x-\frac{800}{3}\right)=0\Leftrightarrow3\left(x-10\right)\left(x+\frac{80}{3}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=10\\x=-\frac{80}{3}\end{cases}}\).Vậy \(S=\left\{10,-\frac{80}{3}\right\}\)
Nhẩm thấy có nghiệm x=10
Phân tích VT thành nhân tử: \(3x^2+50x-800=\left(3x+80\right)\left(x-10\right)\)=0
\(\Leftrightarrow\orbr{\begin{cases}3x+80=0\\x-10=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-80}{3}\\x=10\end{cases}}}\)
Vậy phương trình có hai nghiệm như trên.
\(\Leftrightarrow\)(3x^2-30x)+(80x-800)=0
\(\Leftrightarrow\)3x(x-10)-80(x-10)=0
\(\Leftrightarrow\)(x-10)(3x-80)=0
\(\Leftrightarrow\)x-10=0\(\Rightarrow\)x=10
hoặc 3x-80=0\(\Rightarrow\)x=\(\frac{80}{3}\)
Vậy ........
___Chúc bn hc tốt.....
cho phương trình x2- 5x -3 = 0 có hai nghiệm x1,x2.Lập phương trình bậc hai của hai nghiệm 2(x1)2-1 và 2(x2)2-1 .Mình phân vân là x2+ 24x + 11 = 0 hay x2-60x -25 nhỉ ???
Áp dụng định lí viet cho phương trình: x2 - 5x - 3 = 0
Ta có: \(x_1+x_2=5;x_1.x_2=-3\)
=> \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=5^2+2.3=31\)
Xét:
\(\left(2x_1^2-1\right)+\left(2x_2^2-1\right)=2\left(x_1^2+x_2^2\right)-2=2.31-2=60\)
\(\left(2x_1^2-1\right).\left(2x_2^2-1\right)=4x_1^2x_2^2-2\left(x_1^2+x_2^2\right)+1=4.\left(-3\right)^2-2.31+1=-25\)
=> Phương trình bậc 2 cần tìm là:
x2 - 60 x - 25 = 0
Giải phương trình: 7x4+60x3+70x2-100x+17=0
Giải phương trình f ' x = 0 , biết rằng: f x = 3 x + 60 x - 64 x 3 + 5
Giải phương trình : 48x4 + 144x3 + 148x2 + 60x + 7 = 0 .
Giải phương trình
\(\left(2x+4\right)\sqrt[3]{2x+3}-\sqrt{9x^3+60x^2+133x+98}-x^2+2x+5\)
Giải pt mà chỉ có VT, còn VP đâu, mình giải cho?
Giải phương trình:\(\sqrt{x^2+x+25}+\sqrt{x^2+x+16}=9\)
Đặt \(\hept{\begin{cases}\sqrt{x^2+x+25}=a\ge0\\\sqrt{x^2+x+16}=b\ge0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a+b=9\\a^2-b^2=9\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a+b=9\\\left(a+b\right)\left(a-b\right)=9\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a+b=9\\a-b=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=5\\b=4\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\sqrt{x^2+x+25}=5\\\sqrt{x^2+x+16}=4\end{cases}}\)
\(\Rightarrow x^2+x=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Đặt \(t=x^2+x+16>0\)
pt trên đc viết lại thành
\(\sqrt{t+9}+\sqrt{t}=9\)
\(\Leftrightarrow t+9+t+2\sqrt{t\left(t+9\right)}=81\)
\(\Leftrightarrow2\sqrt{t\left(t+9\right)}=72-t\)
\(\Leftrightarrow\hept{\begin{cases}72-t>0\\4t\left(t+9\right)=\left(72-t\right)^2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}t< 72\\3t^2+180t-5184=0\end{cases}}\)
\(\Leftrightarrow t=-30+6\sqrt{73}\) (vì t > 0)
Thử lại thấy ko thỏa mãn
Vậy pt vô nghiệm.
giải phương trình : \(\sqrt{x^2+x+25}-\sqrt{x^2+x+9}=2\)
Điều kiện: mọi \(x\in R\)
Ta có \(\sqrt{x^2+x+25}=\sqrt{x^2+x+9}+2\)
\(\Leftrightarrow x^2+x+25=x^2+x+9+4.\sqrt{x^2+x+9}+4\)
\(\Leftrightarrow\sqrt{x^2+x+9}=3\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)