Cho tam giác ABC vuông tại A. Điểm I là trung điểm của cạnh BC. Qua I kẻ đường thẳng song song với AB cắt AC tại N và kẻ đường thẳng song song với AC cắt AB tại M. Tam giác ABC có thêm điều kiện gì thì AMIN là hình vuông
Cho tam giác ABC vuông tại A. Điểm I là trung điểm của cạnh BC. Qua I kẻ đường thẳng song song với AB cắt AC tại N và kẻ đường thẳng song song với AC cắt AB tại M. Tam giác ABC có thêm điều kiện gì thì tứ giác AMIN là hình vuông?
Cho tam giác ABC. O là giao điểm các đường phân giác. Ta đặt AB=c, AC=b, BC=a. AO cắt BC tại D. Tính DB theo a, b, c
cho tam giác abc vuông tại a. i là trung điểm của cạnh bc. qua i kẻ đường thẳng song song với ab cắt ac tại n. kẻ đường thẳng song song với ac cắt ab tại m.
a) c/m tứ giác AMIN là hình chữ nhật
b)tam giác abc có them điều kiện gì thì tứ giác AMIN là hình vuông?
c)điểm E đỗi xứng với I qua M điểm F đối xứng với I qua N. c/m ba điểm E,A,F thẳng hàng.
help mee
a) IM // AC, AB \(\perp AC\)
\(\Rightarrow\)IM \(\perp AB\) \(\Rightarrow\)\(\widehat{AMI}=90^0\)
IN // AB, AB \(\perp AC\)
\(\Rightarrow\)IN \(\perp AC\) \(\Rightarrow\)\(\widehat{ANI}=90^0\)
Tứ giác AMIN có: \(\widehat{AMI}=\widehat{MAN}=\widehat{ANI}=90^0\)
nên AMIN là hình chữ nhật
b) Hình chữ nhật AMIN là hình vuông
\(\Leftrightarrow\)AI là phân giác \(\widehat{BAC}\)
mà AI đồng thời la trung tuyến của \(\Delta ABC\)
\(\Rightarrow\)\(\Delta ABC\)vuông cân tại A
1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC
a, Tứ giác BMNC là hình gì ?
b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ?
c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi .
d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông
2, Cho tam giác ABC cân tai A lấy điểm M trên cạnh AB . Từ M kẻ đường thẳng song song với AC cắt BC tại E
a, Chứng minh tam giác BME cân
b, Trên tia đối của tia CA lấy điểm N sao cho CN = BM . Tứ giác MCNE là hình gì ?
c, Gọi I là trung điểm của CE . Chứng minh M,N,I thẳng hàng
d, Từ M kẻ đường thẳng song song với BC cắt AC tại F . Từ N kẻ đường thẳng song song với BC cắt Me tại K . Chứng minh F,I,K thẳng hàng
Bài 1:
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC
hay BMNC là hình thang
b: Xét ΔABK có MI//BK
nên MI/BK=AM/AB=1/2(1)
XétΔACK có NI//CK
nên NI/CK=AN/AC=1/2(2)
Từ (1)và (2) suy ra MI/BK=NI/CK
mà MI=NI
nên BK=CK
hay K là trug điểm của BC
Xét ΔABC có
K là trung điểm của BC
M là trung điểm của AB
Do đó: KM là đường trung bình
=>KM//AN và KM=AN
hay AMKN là hình bình hành
cho tam giác ABC vuông tại A. Gọi D là trung điểm của BC. Qua D kẻ đường thẳng m song song AB, cắt AC tại E và đường thẳng n song song AC, cắt AB tại F.
a) chứng minh AEDF là hình chữ nhật
b) tam giác ABC cần có thêm điều kiện gì để AEDF là hình vuông
hinh nhu ban viet sai de bai,cau a phai la hinh binh hanh chu
a) ta co FD song song AE
AF vuong goc AE
suy ra AF vuong goc FD suy ra goc AFD = 90 do(1)
Ta co DE song song AF
AE vuong goc AF
suy ra AE vuong goc DE suy ra goc DEA = 90 do (2)
Ma goc FAE = 90 do (3)
Tu (1)(2)(3) suy ra AEDF la hcn
b) Trong tam giac vuong ABC co :
AD la trung tuyen
suy ra AD = 1/2 BC
ma DC = 1/2 BC
suy ra AD = DC
suy ra tam giac ADC can tai D
ma DE la duong cao
suy ra DE la trung tuyen
suy ra E la trung diem cua BC
Chung minh tuong tu ta co : F la trung diem cua AB
De AEDF la hinh vuong thi AF = AE
ma AE = 1/2 AC
AF = 1/2 AB
suy ra AB = AC
suy ra tam giac ABC vuong can( vi tam giac ABC vuong tai A)
Vay tam giac ABC vuong can thi AEDF la hinh vuong
Cho tam giác ABC vuông tại A, gọi M là trung điểm BC, N là trung điểm AC. Qua M kẻ đường thẳng song song với AC và cắt AB tại F. Từ C kẻ đường thẳng song song với AB và cắt MF tại E.
a. Tứ giác AFEC, AMEN là hình gì ? Vì sao ?
b. CMR: E đối xứng với F qua M
c. Gọi H là điểm đối xứng của M qua F. CMR: HF= 1/3 HE
d. Tam giác ABC có thêm điều kiện gì thì tứ giác AMBH là hình vuông ?
cho tam tam giác ABC .Gọi I là một điểm di chuyển trên BC. Qua I, kẻ đường thẳng song song với cạnh AC cắt cạnh AB tại M. Qua I, kẻ đường thẳng song song với cạnh AB cắt cacnhj AC tại N. Tìm vị trí của điểm I để MN song song với BC
Cho tam giác ABC Gọi M là trung điểm của AB Qua M kẻ đường thẳng song song với BC và cắt AC tại N qua n kẻ đường thẳng song song AB cắt BC tại B .
a tứ giác mnpb là hình bình hành
b tam giác amn =tam giác npc
c gọi i,k giao điểm bn với mp,ap . cmr kn=2ik
a, Xét tứ giác MNPB có:
MN//PB (Vì MN//BC và P ϵ BC)
MB//NP (Vì AB//NP và M ϵ AB)
=> Tứ giác MNPB là hbh
b, Ta có:
M là trung điểm AB
MN//BC
=> MN là đường trung bình của tam giác ABC
=> N là trung điểm AC, MN=BC/2 và MN//BC
Xét 2 tam giác AMN và NPC có
AM=NP (Vì AM=BM, BM=NP)
AN=NC
MN=PC ( Vì MN=BC/2, MN=BP)
=> Tam giác AMN = Tam giác NPC (c.c.c)
Cho tam giác ABC, I là trung điểm của AB. Qua I kẻ đường thẳng song song với BC, nó cắt cạnh AC tại K. Qua K kẻ đường thẳng song song với AB, nó cắt cạnh BC tại H. CMR:
a/ tam giác AIK = tam giác KHC
b/ AK = KC và AK = IH
a/ Vì AK // IH nên AI = KH và AK = IH ( vì phần ghi nhớ ở bài 1 đó )
Vì IK // HC nên IK = HC và IH = KC
Xét tam giác AIK và tam giác IKH có:
\(\hept{\begin{cases}AI=KH\\IK:canh\\AK=IH\end{cases}}chung\)
suy ra tam giác AIK = tam giác HKI ( c.c.c )
Xét tam giác IKH và tam giác KHC có :
\(\hept{\begin{cases}IK=HC\\KH:canh\\IH=KC\end{cases}}chung\)
suy ra tam giác HKI = tam giác KHC ( c.c.c )
mà tam giác AIK = tam giác HKI
tam giác HKI = tam giác KHC
suy ra tam giác AIK = tam giac KHC( đpcm )
b/ Vì tam giác AIK = tam giác KHC
nên AK = CK ( vì là 2 cạnh tương ứng )
Vậy :........
hay AI = HK ( vì là 2 cạnh tương ứng )
mà AI = BI ( vì I là tring điểm của AB )
nên BI = HK ( = AI )
Vậy: ......
Vân Khánh đây là bài làm nhé! Nhớ k nghe! Thank you!!!
a) Nối IH
Xét 2 tam giác: \(\Delta\)BIH và \(\Delta\)KHI có
IH cạnh chung
\(\widehat{BIH}\)= \(\widehat{KHI}\)( so le trong do AB // KH)
\(\widehat{IHB}\)= \(\widehat{HIK}\)( so le trong do IK // BC)
suy ra \(\Delta\)BIH = \(\Delta\)KHI (g.c.g)
\(\Rightarrow\)IB = KH (2 cạnh tương ứng)
mà IB = IA nên IA = KH
\(\widehat{AIK}\)= \(\widehat{IBH}\)(đồng vị do IK // BC)
\(\widehat{IBH}\)= \(\widehat{KHC}\)(đồng vị do KH // AB)
suy ra \(\widehat{AIK}\)= \(\widehat{KHC}\)
Xét 2 tam giác: \(\Delta\)AIK và \(\Delta\)KHC có:
IA = HK (cmt)
\(\widehat{AIK}\)= \(\widehat{KHC}\)(cmt)
\(\widehat{IAK}\)= \(\widehat{HKC}\)(đồng vị do HK // AB)
suy ra \(\Delta\)AIK = \(\Delta\)KHC (g.c.g)
b) \(\Delta\)AIK = \(\Delta\)KHC (theo phần a) \(\Rightarrow\)AK = KC (2 cạnh tương ứng)
Xét \(\Delta\)AIK và \(\Delta\)HKI có:
AI = HK (cm)
\(\widehat{AIK}\)= \(\widehat{HKI}\)(so le trong do HK // AB)
IK cạnh chung
suy ra \(\Delta\)AIK = \(\Delta\)HKI (c.g.c)
\(\Rightarrow\)AK = IH (2 cạnh tương ứng)