Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Duong thi thu huong
Xem chi tiết
Vũ Văn Thành
Xem chi tiết
ngo thi phuong
12 tháng 3 2017 lúc 14:08

Hỏi đáp Toán

nguyễn phương ngân
Xem chi tiết
╰❥βôղɕ ɣ✼︵✰
Xem chi tiết
nguyễn bá lương
6 tháng 8 2018 lúc 8:47

A = 1 × 2 × 3 + 2 × 3 × 4 + .....+ 48 × 49 × 50

ta có 4 x A = 1 x 2 x 3 x 4 + 2 x 3 x 4 x (5 -1) + .....+ 48 × 49 × 50 x (51 - 47)

= 1 x 2 x 3 x 4 +  2 x 3 x 4 x 5 - 1 x 2 x 3 x 4 + ... + 48 x 49 x 50 x 51 - 47 x 48 x 49 x 50

= 48 x 49 x 50 x 51

suy ra A = (48 x 49 x 50 x 51) : 4

              = 12 x 49 x 50 x 51

nhớ k cho mik nha rùi mik lm nốt cho

LÃ KHÔI NGUYÊN
12 tháng 10 2024 lúc 15:28

A = 1 × 2 × 3 + 2 × 3 × 4 + .....+ 48 × 49 × 50

ta có 4 x A = 1 x 2 x 3 x 4 + 2 x 3 x 4 x (5 -1) + .....+ 48 × 49 × 50 x (51 - 47)

= 1 x 2 x 3 x 4 +  2 x 3 x 4 x 5 - 1 x 2 x 3 x 4 + ... + 48 x 49 x 50 x 51 - 47 x 48 x 49 x 50

= 48 x 49 x 50 x 51

suy ra A = (48 x 49 x 50 x 51) : 4

              = 12 x 49 x 50 x 51

 

Chirikatoji
Xem chi tiết
Ninh Thế Quang Nhật
25 tháng 3 2016 lúc 12:38

=> A = 1 x 50 + 2 x ( 50 - 1 ) + 3 x ( 50 - 2 ) + .... + 49 x ( 50 - 48 ) + 50 x ( 50 - 49 )

         = 1 x 50 + 2 x 50 - 1 x 2 + 3 x 50 - 2 x 3 + ..... + 49 x 50 - 48 x 49 + 50 x 50 - 49 x 50

         = ( 1 + 2 + 3 + .... + 50 ) x 50 + ( 1 x 2 + 2x 3 + .... + 49 x 50 )

         = \(\frac{50.\left(50+1\right)}{2}\times50+\frac{49.50.51}{3}\)

         = 63750 + 41650

        = 105400

Nguyễn Minh Trang
Xem chi tiết
Khương Trà My
Xem chi tiết
Khương Trà My
27 tháng 4 2018 lúc 9:38

ai trả lời đúng mình tick cho!!

okokok

Member lỗi thời :>>...
25 tháng 8 2021 lúc 12:28

Xét vế phải :

\(VT=\frac{99}{50}-\frac{97}{49}+...+\frac{7}{4}-\frac{5}{3}+\frac{3}{2}-1\)

\(=2.\left(\frac{99}{100}-\frac{97}{98}+...+\frac{7}{8}-\frac{5}{6}+\frac{3}{4}-\frac{1}{2}\right)\)

\(=2\left[\left(1-\frac{1}{100}\right)-\left(1-\frac{1}{98}\right)+...+\left(1-\frac{1}{4}\right)-\left(1-\frac{1}{2}\right)\right]\) 

\(=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\right)\)

 \(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{25}+\frac{1}{26}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+...+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{49}+\frac{1}{50}=VT\Rightarrow\left(đpcm\right)\)

Khách vãng lai đã xóa
Member lỗi thời :>>...
25 tháng 8 2021 lúc 12:33

\(\text{Nhầm xíu , cho sửa lại nhé}\)

\(\text{Xét vế phải :}\)

\(VP=\frac{99}{50}-\frac{97}{49}+...+\frac{7}{4}-\frac{5}{3}+\frac{3}{2}-1\)

\(=2.\left(\frac{99}{100}-\frac{97}{98}+...+\frac{7}{8}-\frac{5}{6}+\frac{3}{4}-\frac{1}{2}\right)\)

\(=2\left[\left(1-\frac{1}{100}\right)-\left(1-\frac{1}{98}\right)+...+\left(1-\frac{1}{4}\right)-\left(1-\frac{1}{2}\right)\right]\)

\(=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\right)\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{25}+\frac{1}{26}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+...+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{49}+\frac{1}{50}=VT\Rightarrow\left(đpcm\right)\)

Khách vãng lai đã xóa
Vu Ngoc Quyen
Xem chi tiết
Ngân Nguyễn
Xem chi tiết
Pham Van Hung
6 tháng 10 2018 lúc 20:58

     \(\frac{49}{1}+\frac{48}{2}+\frac{47}{3}+...+\frac{2}{48}+\frac{1}{49}\)

\(=1+1+...+1+\frac{48}{2}+\frac{47}{3}+...+\frac{2}{48}+\frac{1}{49}\)(có 49 số 1)

\(=\left(1+\frac{48}{2}\right)+\left(1+\frac{47}{3}\right)+...+\left(1+\frac{2}{48}\right)+\left(1+\frac{1}{49}\right)+1\)

\(=\frac{50}{2}+\frac{50}{3}+...+\frac{50}{48}+\frac{50}{49}+\frac{50}{50}\)

\(=50\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}+\frac{1}{50}\right)\)

Chúc bạn học tốt.