Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
LÊ LINH NHI
Xem chi tiết
Nữ hoàng sến súa là ta
Xem chi tiết
_Phạm Thị Phương thảo_
Xem chi tiết
vu minh hang
Xem chi tiết
๛๖ۣۜH₂ₖ₇ツ
Xem chi tiết
Trần Thị Mỹ Anh
1 tháng 3 2020 lúc 14:59

Bạn tự vẽ hình nha 

1. Xét tam giác EBH có: BE=BH (gt) -> tan giác EBH cân tại B -> góc BEH = góc BHE

Ta lại có góc ABH = góc BEH + góc BHE (góc ngoài của tam giác EBH); Mà góc BEH = góc BHE (cmt) -> góc ABH = 2 góc BEH; Mà góc ABH = 2 góc ACB (gt)-> góc BEH = góc ACB ( đpcm)

2. Ta có: góc BHE = góc DHC (2 góc đối đỉnh); Mà góc BHE = góc BEH (cmt) và góc BEH = góc ACB (cmt) => góc DHC = góc ACB -> tam giác DHC cân tại D -> DH = DC ( 2 cạnh tương ứng)

Ta có: tam giác AHC vuông tại H -> góc HAC +góc ACB = 90 độ (2 góc ở đáy tam giác vuông ); Mà  góc AHD + góc DHC = 90 độ và góc ACB = góc DHC (cmt) -> góc HAC = góc AHD -> tam giác AHD cân tại D => DA = DH (2 cạnh tương ứng ) 

Vậy DH=DC=DA

3. Ta có tam giác ABB' có: BH = B'H ( H là trung điểm BB') -> AH là đường trung tuyến lại vừa là đường cao -> tam giác ABB' cân tại A -> góc ABH = góc AB'H (2 góc ở đáy)

Xét tam giác AB'C có: góc AB'H = góc B'AC + góc ACB' (góc ngoài); Mà góc ABH = góc AB'H (cmt) -> góc ABH = góc B'AC + góc ACB ; Mà góc ABH = 2 góc ACB'

-> góc B'AC = góc ACB' => tam giác AB'C cân tại B'

4. Bạn vẽ lại hình nha: giả sử tam giác ABC vuông tại A

Xét tam giác ADE và tam giác ABC có: góc A chung và góc BEH = góc ACB (cmt) -> hai tam giác đồng dạng theo trường hợp (g.g) -> góc ADE = góc ABC (2 góc tương ứng) (1) 

Ta có : góc HAD = 90 độ - góc C ( tam giác HAC vuông tại H); Mà góc ABC = 90 độ - góc C ( tam giác ABC vuông tại A) -> góc HAD = góc ABC (2)

Từ (1) và (2) -> góc ADE = góc HAD; Mà góc HAD = góc AHD nên suy ra tam giác AHD đều 

Xét tam giác ADE và tâm giác HAC có: góc EAD = góc CHA = 90 độ (gt); góc ADE = góc HAC (cmt); AD = AH (tam giác AHD đều) => tam giác ADE = tam giác HAC theo trường hợp (g.c.g)

=> DE = AC (2 cạnh tương ứng) => DE2 = AC2 ; Mà AC2 = BC2 - AB2 (định lí Py-ta-go trong tam giác ABC) => DE2 = BC2 - AB2 (đpcm) 

Học tốt nhé 🙋‍♀️🙋‍♀️🙋‍♀️💗💗💗

Khách vãng lai đã xóa
Lina xinh đẹp
Xem chi tiết
Quyet nguyen ba
Xem chi tiết
HanSoo  >>>^^^.^^^<<<
Xem chi tiết
Edogawa Conan
30 tháng 7 2019 lúc 21:55

A B C H E F 1 2 3 1

CM: Ta có: BE = BH (gt) => t/giác BEH cân tại B  => \(\widehat{E}=\widehat{H_1}\)

Do \(\widehat{ABH}\) là góc ngoài của t/giác BHE nên :  \(\widehat{ABH}=\widehat{E}+\widehat{H_1}\) => \(\widehat{ABH}=2.\widehat{H_1}\)

Mà \(\widehat{ABH}=2.\widehat{C}\) 

=> \(2.\widehat{H_1}=2.\widehat{C}\) => \(\widehat{H_1}=\widehat{C}\)

mà \(\widehat{H_1}=\widehat{H_2}\) (đối đỉnh)

=> \(\widehat{C}=\widehat{H_2}\) => t/giác HFC cân tại F => FH = FC (2)

Ta có: \(\widehat{H_2}+\widehat{H_3}=90^0\) (cùng phụ nhau)

 \(\widehat{A_1}+\widehat{C}=90^0\) (t/giác AHC vuông tại H)

Mà \(\widehat{H_2}=\widehat{C}\) (cmt)

=> \(\widehat{A_1}=\widehat{H_3}\) => t/giác AFH cân tại F => AF = FH (2)

Từ (1) và (2) => FH = FA = FC

Phùng Đức
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 4 2021 lúc 21:36

a) Xét ΔBAD vuông tại A và ΔBHD vuông tại H có 

BD chung

\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))

Do đó: ΔBAD=ΔBHD(cạnh huyền-góc nhọn)

Suy ra: BA=BH(Hai cạnh tương ứng)