Tìm GTNN \(B=\frac{8-x}{x-3}\)với \(x\in Z\)
Tìm GTNN: \(\frac{8-x}{x-3}\)với x thuộc Z
Cho \(P=\frac{2x}{\sqrt{x}-2}\)
a. Tìm P biết \(x=\frac{8}{3+\sqrt{5}}\)
b. tìm GTNN của P khi \(x< 4\)
c. TÌm \(x\in Z\) để \(P\in Z\)
x,y,z, dương tm:x+y+z>=3. Tìm GTNN của P= \(\frac{x^2}{yz+\sqrt{8+x^3}}+\frac{y^2}{xz+\sqrt{8+y^3}}+\frac{z^2}{xy+\sqrt{8+z^3}}\)
Cho \(B=\frac{8-x}{x-3}\left(x\in Z\right)\)
Tìm \(x\in Z\) để
a/B có giá trị nguyên
b/B có GTNN
a)\(B=\frac{8-x}{x-3}=\frac{8-3-\left(x-3\right)}{x-3}=\frac{5}{x-3}-1\)
Để B nguyên thì \(\frac{5}{x-3}\) nguyên hay \(5⋮x-3\)
=>\(x-3\in\text{Ư}\left(5\right)=\left\{\pm1;\pm5\right\}\)
Với x-3=-5
x=-2
Với x-3=-1
x=2
Với x-3=1
x=4
Với x-3=5
x=8
Vậy để B nguyên thì \(x\in\left\{\pm2;4;8\right\}\)
Tìm GTNN của \(P=\frac{4x^2}{x-3}\)với \(x\in Z\)
Tìm GTNN của biểu thức:
\(C=\frac{6}{|x|-3}\)với \(x\in Z\)
\(C=\frac{6}{\left|x\right|-3}\)
Ta có:
\(6>0\)
\(\Rightarrow\frac{6}{\left|x\right|-3}\ge1\forall x\inℤ\)
\(\Rightarrow C\ge1\forall x\inℤ\)
Dấu "=" xảy ra:
\(\Leftrightarrow\left|x-3\right|=1\)
\(\Leftrightarrow\left|x\right|=4\)
\(\Leftrightarrow x=\pm4\)
Vậy C nhỏ nhất khi C = 1 tại x = \(\pm4\)
Chúc em học tốt nhé!
Lưu ý: |x| - 3 là mẫu số thì luôn luôn khác 0 nên có nhiều trường hợp nhé!
\(B=\left(\frac{x+\sqrt{x}}{x\sqrt{x}+x+\sqrt{x}+1}+\frac{1}{x+1}\right):\frac{\sqrt{x}-1}{x+1}\)
a, Rút gọn A
b, Tính B với x=\(\frac{2+\sqrt{3}}{2}\)
c, Tìm \(x\in Z\) để \(B\in Z\)
d, Tìm x để \(B\sqrt{x}=5\)
e, Tìm x để \(B\sqrt{x}\) đạt GTNN
Cho \(\hept{\begin{cases}x,y,z>0\\xy+yz+zx=3\end{cases}}\)Tìm GTNN của \(A=\frac{x^2}{\sqrt{x^3+8}}+\frac{y^2}{\sqrt{y^3+8}}+\frac{z^2}{\sqrt{z^3+8}}\)
\(\sqrt{x^3+8}=\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}\le\frac{x^2-x+6}{2}\)
=>\(\frac{x^2}{\sqrt{x^3+8}}\ge\frac{2x^2}{x^2-x+6}\)
=>A\(\ge\frac{2\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\)
mà \(\left(x+y+z\right)^2\ge3xy+3yz+3zx=9\)
=>\(x+y+z\ge3\)
Xét TS-MS= 2\(4\left(xy+yz+zx\right)+x+y+z-18\ge12+6-18=0\)
=>TS/MS \(\ge1\)
=>A\(\ge1\)
Dấu = khi x=y=z=1
Cho \(R=1:\left(\frac{x^2+2}{x^3-1}+\frac{x+1}{x^2+x+1}-\frac{1}{x-1}\right)\)
a,Rút gọn R
b,So sánh R với 3
c,Tìm GTNN của R
d,Tìm \(x\in Z\) để R>4