Tìm số tự nhiên abc (a>b>c>0) sao cho 5cab=3330-5abc-5bca
Tìm số tự nhiên abc (a>b>c>0) sao cho 5.cab=3330- 5.abc- 5.bca
Tìm số tự nhiên abc (a>b>c>0) sao cho abc+bca+cab=666
Tìm các số tự nhiên a,b,c khác 0 sao cho a + b + c = abc
$\rm Cho\ a,b,c \ge 0 .Thoả \ mãn \ ab+bc+ac=abc .Chứng \ minh\ a^{2}+b^{2}+c^{2}+5abc \ge 8$
`b)` Cho` a,b,c>=0,ab+bc+ca+abc=4`
CMR:`a^2+b^2+c^2+5abc>=8`
a. Đề bài sai (thực chất là nó đúng 1 cách hiển nhiên nhưng "dạng" thế này nó sai sai vì ko ai cho kiểu này cả)
Ta có: \(abc=ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow abc\ge27\)
\(\Rightarrow a^2+b^2+c^2+5abc\ge a^2+b^2+c^2+5.27>>>>>8\)
b.
\(4=ab+bc+ca+abc=ab+bc+ca+\sqrt{ab.bc.ca}\le ab+bc+ca+\sqrt{\left(\dfrac{ab+bc+ca}{3}\right)^3}\)
\(\sqrt{\dfrac{ab+bc+ca}{3}}=t\Rightarrow t^3+3t^2-4\ge0\Rightarrow\left(t-1\right)\left(t+2\right)^2\ge0\)
\(\Rightarrow t\ge1\Rightarrow ab+bc+ca\ge3\Rightarrow a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}\ge3\)
- TH1: nếu \(a+b+c\ge4\)
Ta có: \(ab+bc+ca=4-abc\le4\)
\(\Rightarrow P=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)+5abc\ge4^2-2.4+0=8\)
(Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(2;2;0\right)\) và các hoán vị)
- TH2: nếu \(3\le a+b+c< 4\)
Đặt \(a+b+c=p\ge3;ab+bc+ca=q;abc=r\)
\(P=p^2-2q+5r=p^2-2q+5\left(4-q\right)=p^2-7q+20\)
Áp dụng BĐT Schur:
\(4=q+r\ge q+\dfrac{p\left(4q-p^2\right)}{9}\Leftrightarrow q\le\dfrac{p^3+36}{4p+9}\)
\(\Rightarrow P\ge p^2-\dfrac{7\left(p^3+36\right)}{4p+9}+20=\dfrac{3\left(4-p\right)\left(p-3\right)\left(p+4\right)}{4p+9}+8\ge8\)
(Dấu "=" xảy ra khi \(a=b=c=1\))
tìm các số tự nhiên a,b,c sao cho :
a+b+c=abc và a>b>c>0
a+b+c=abc(1) và a>b>c>0
=) a+b+c < 3a (=) abc<3a (=) bc<3
do b>c>0 =) bc>0 =) bc =1;2
bc=1=)b=1,c=1(L vì b=c)
bc=2=)b=2,c=1(TM)
thay vào (1) ta đc:
a+2+1=a.2.1 (=)3+a=2a (=) a = 3
vậy a=3,b=2,c=1
chúc bn học tốt
Tìm các số tự nhiên a,b,c sao cho a+b+c=abc và a>b>c>0
1) Tìm các số tự nhiên có 2 chữ số, sao cho tổng của số ấy và số viết theo thứ tự ngược lại la 1 số chính phương.
2) Tìm số tự nhiên abc ( a>b>c>0) sao cho
abc + bca + cab = 666
3) a) Tìm số tự nhiên chia hết cho 7 có 3 chữ số, biết rằng tổng các chữ số của số đó bằng 14
Tìm các số tự nhiên a,b,c sao cho :
a + b + c = abc và a > b > c > 0.
giúp mình với !
a)Tìm số tự nhiên n để \(n^2-3n+5\) chia hết cho \(n-2\)
b)Cho 3 số a,b,c thoả mãn a+b+c=0.CMR:
\(2\left(a^5+b^5+c^5\right)=5abc\left(a^2+b^2+c^2\right)\)
Mong các bạn giúp đỡ
a)
a) n2−3n+5 : n−2 = n - 1 (R=3) . Để phép chia hết nên suy ra: n-1 thuộc Ư(3) . Suy ra : n = { 4 ; -2 ; 0 ; 2 }