bài 1:tìm các cặp số nguyên (x,y)thỏa mãn đồng thời các đk sau:
x+y=5 và Ix+1I+Iy-2I=4
bài 1:tìm các cặp số nguyên (x,y)thỏa mãn đồng thời các đk sau:
x+y=5 và Ix+1I+Iy-2I=4
x-y=3 và |x-6|+|y-1|=4
a,tìm x thuộc Z, biết Ix +5I-(-17) = 20
b,tìm các cặp số nguyên thỏa mãn (x-2).(y+3) = 15
c,tìm giá trị nhỏ nhất của biểu thức A= Ix-2I+Iy-5) -10 với x,y thuộc Z
các bạn trả lời nhanh mình đang vội
a) | x + 5 | - ( -17 ) = 20
=> | x + 5 | = 3
=> x + 5 = 3 hoặc x + 5 = -3
=> x = -2 hoặc x = -8
a) \(\left|x+5\right|-\left(-17\right)=20\)
\(\left|x-5\right|+17=20\)
\(\left|x-5\right|=3\)
\(\Rightarrow\orbr{\begin{cases}x-5=3\\x-5=-3\end{cases}\Rightarrow\orbr{\begin{cases}x=8\\x=2\end{cases}}}\)
vậy \(x\in\left\{8;2\right\}\)
b) \(\left(x-2\right)\left(y+3\right)=15\)
Ta có bảng:
x-2 | 1 | 15 | -1 | -15 |
x | 3 | 17 | 1 | -13 |
y+3 | 15 | 1 | -15 | -1 |
y | 12 | -2 | -18 | -4 |
Vậy..
c) \(A=\left|x-2\right|+\left|y-5\right|-10\)
Ta có: \(\left|x-2\right|\ge0\forall x\inℝ\)
\(\left|y+5\right|\ge0\forall y\inℝ\)
\(\Rightarrow A=\left|x-2\right|+\left|y-5\right|-10\ge-10\)
Dấu " = " xảy ra khi \(\hept{\begin{cases}x-2=0\\y-5=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=5\end{cases}}}\)
Vậy \(x=2;y=5\)khi đạt \(GTNN=-10\)
hok tốt!!
Tìm cặp số nguyên x, y thỏa mãn:
x+4 và Ix+2I+IyI=6
Tìm các cặp số (x,y) nguyên dương thỏa mãn phương trình sau:x^2-y^2+2x-4y-10=0
\(x^2-y^2+2x-4y-10=0\)
\(\Rightarrow\left(x^2+2x+1\right)-\left(y^2+4y+4\right)-7=0\)
\(\Rightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\)
\(\Rightarrow\left(x+1+y+2\right)\left(x+1-y-2\right)=4\)
\(\Rightarrow\left(x-y-1\right)\left(x+y+3\right)=7\)
Vì \(x,y\) nguyên dương nên \(x+y+3>x-y-1>0\)
\(\Rightarrow\hept{\begin{cases}x+y+3=7\\x-y-1=1\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=3\\y=1\end{cases}}\)
Tìm x,y
a) Ix-1I + Ix+2I =0
b) I2x-1I + Iy^2-yI = 0
c) Ix+1I + Ix+2I =3
#)Giải :
a) \(\left|x-1\right|+\left|x+2\right|=0\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}}\)
b) \(\left|2x-1\right|+\left|y^2-y\right|=0\Leftrightarrow\orbr{\begin{cases}2x-1=0\\y^2-y=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=1\\y^2=y\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{1}{2}\\y\in\left\{-1;0;1\right\}\end{cases}}}\)
Bài 4. Tìm các số nguyên x và y thỏa mãn (x+1).( y-2) =5 Bài 5. Tìm các số nguyên x và y thỏa mãn xy -2x + 3y
4:
(x+1)(y-2)=5
=>\(\left(x+1;y-2\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;7\right);\left(4;3\right);\left(-2;-3\right);\left(-6;1\right)\right\}\)
Bài 1: Tìm x ∈ Z, biết:
Ix+2I+Ix+5I+Ix+9I+Ix+1I=5x
Bài 2: Chứng tỏ:
a.(a-b+c)-(a+c)
b.(a+b)-(b-a)+c=2a+c
c.-(a+b-c)+(a-b-c)=-2b
d.a(b+c)-a(b+d)=a(c-d)
e.a(b-c)+a(d+c)=a(b+d)
Bài 3: Tìm tất cả các cặp số nguyên (x;y) biết:
a.(x+3).(y-2)=7
b.(x-1).(xy+2)=5
Mọi người giúp mình làm bài với nha! Cảm ơn mn nhìu :D
b.(a+b)-(b-a)+c=2a+c
Xét VT: (a+b)-(b-a)+c = a + b - b + a + c = 2a+c
Mà VP = 2a+c
=> VT = VP
c.-(a+b-c)+(a-b-c)=-2b
Xét VT: -(a+b-c)+(a-b-c) = -a - b + c + a - b - c = -2b
Mà VP = -2b
=> VT = VP
d.a(b+c)-a(b+d)=a(c-d)
Xét VT: a(b+c)-a(b+d) = ab + ac - ab - ad = ac - ad = a(c-d)
Mà VP = a(c-d)
=> VT = VP
e.a(b-c)+a(d+c)=a(b+d)
Xét VT: a(b-c)+a(d+c)= ab -ac + ad + ac = ab + ad = a(b+d)
Mà VP = a(b+d)
=> VT = VP
Tìm cặp số nguyên (x,y) thỏa mãn đồng thời
x+y= 5 và /x+1/+/y-2/ =4
Tìm các cặp số nguyên (x,y) thỏa mãn đồng thời
a) \(x+y=5\) và \(|x+1|+|y-2|=4\)
b) \(x-y=3\)và \(|x-6|+|y-1|=4\)
:(((( ko bt