Cho a và b là 2 số nguyên khác 0, biết a chia hết cho b và b chia hết cho a.Chứng tỏ rằng a= -b hoặc +b
cho a và b là hai số nguyên khác 0 biết a-b chia hết cho 2
a)chứng tỏ rằng: b-a chia hết cho 2
b)nếu c-b chia hết 2 thì a-c có chia hết cho 2 ko
a-b chia hết cho 2 =>a và b cùng chẵn hoặc lẻ
mà 2 số cùng chẵn hoặc lẻ có hiệu là số chẵn=>chia hết cho 2
vậy b-a chia hết cho 2
c-b chia hết cho 2 =>c và b cùng chẵn hoặc lẻ
mà a và b cùng chẵn hoặc lẻ =>c và a cùng chẵn hoặc lẻ
mà 2 số cùng chẵn hoặc lẻ có hiệu là số chẵn=>chia hết cho 2
=>a-c chia hết cho 2
Cần j CTV
Ta có: a - b chia hết cho 2
=> -1( a - b ) chia hết cho 2
=>-a -( -1b) chia hết cho 2
=> -a + b chia hết cho 2 hay b - a chia hết cho 2
b, c- b chia hết cho 2; a - b chia hết cho 2. Nên a - b - ( c - b) chia hết cho 2
=>a - c chia hết cho 2!!!!!!!
cho 2 số tự nhiên a,b khác 0.Biết a chia hết b và b chia hết a.Chứng minh rầng a=b
cho a,b và hai số nguyên khác 0.Khi đó nếu a chia hết cho b và b chia hết cho a thì a = b hoặc a = -b
thật vậy do a chia hết cho b nên a = bq với q thuộc Z . lại do b chia hết cho a nên b = ap với p thuộc Z .
Suy ra a = bq = (ap)q = a(pq), tức là pq = 1 (vì a khác 0). Vậy p = q = 1 hoặc p = q = -1 .
Chứng tỏ a = b hoặc a = -b.
Cho f(x) là 1 đa thức với hệ số nguyên a, b là 2 số nguyên khác 0 , nguyên tố cùng nhau.Chứng minh rằng :Nếu f(a) chia hết cho b và f(b) chia hết cho a thì f(a+b) chia hết cho ab.
1) Chứng minh : nếu 2 số a,b là 2 số nguyên khác 0 và a là bội của b, b là bội của a thì a= b hoặc a= -b.
2) Tìm số nguyên n biết n+5 chia hết cho n+1 và n+1 chia hết cho n+5.
1.
$a\vdots b, b\vdots a$ và $a,b\neq 0$ nên $|a|\geq |b|, |b|\geq |a|$
$\Rightarrow |a|=|b|$
$\Rightarrow a=\pm b$
Ta có đpcm.
2/
Áp dụng kết quả của bài 1, ta suy ra $n+5=n+1$ hoặc $n+5=-(n+1)$
Nếu $n+5=n+1$
$\Leftrightarrow 5=1$ (vô lý)
Nếu $n+5=-(n+1)$
$\Rightarrow 2n+6=0$
$\Rightarrow 2n=-6$
$\Rightarrow n=-3$
Cho a, b thuộc N và không chia hết cho 3
Khi chia a và b cho 3 thì có 2 chữ số dư khác nhau ( khác 0 ) chứng tỏ rằng : ( a+ b) chia hết cho 3
BÀI 1: CHỨNG MINH RẰNG 4 SỐ TỰ NHIÊN BẤT KỲ BAO GIỜ CŨNG CÓ HIỆU HAI SỐ CHIA HẾT CHO 3
BÀI 2: CHO 3 SỐ TỰ NHIÊN a,b và c.Trong đó a và b chia cho 5 dư 3 còn c chia cho 5 dư 2
a CHỨNG MINH RẰNG MỖI TỔNG HOẶC HIỆU a+b+c hoặc a+c-b;a-b chia hết cho 5
b Mỗi tổng hoặc hiệu a+b+c; a+b-c ; a+c-b có chia hết cho 5 không
Bài 3 : Chứng minh rằng một số tự nhiên được viết bằng toàn chữ số 4 thì không chia hết cho 8
Bài 4: Tìm 2 số tự nhiên khác 0 biết tích của 2 số gấp 2 lần tổng của chúng
Bài 5:Cho a và b là các số tự nhiên khác 0 và a>2;b>2 . Chứng minh rằng axb > a+b
Làm nhanh trong ngày hôm nay và ngày mai hộ mình nha
trân thành cảm ơn
1. Cho biểu thức A=(-a-b+c)-(-a-b-c). Hãy rút gọn biểu thức A
2.Tìm tất cả các số nguyên a biết (6a+1) chia hết cho (3a-1)
3.Tìm số nguyên a,b biết a>0 và a(b-2)=3
4.Chứng minh rằng nếu 2 số a,b là 2 số nguyên khác 0 và a là bội của b;b là bội của a thì a=b hoặc a=-b
Chứng tỏ rằng với mọi số tự nhiên a và b khác o ta luôn có
Nếu a chia hết cho b ,b chia hết cho a thì b=a
Áp dụng tìm x biết :
18 chia hết cho (x+2) và (x+2)chia hết cho 18
Giải:
+) a chia hết cho b => a = k. b ( với k là số tự nhiên ) (1)
+) b chia hết cho a => b = l . a ( với l là số tự nhiên ) (2)
Từ ( 1) , (2) => a = k . b = k . l . a
=> a - k . l . a = 0
=> a ( 1 - k . l ) = 0 Vì a khác 0
=> 1 - k . l = 0
=> k . l = 1 Vì k và l là hai số tự nhiên
=> k = l = 1
Vậy b = a.
Áp dụng:
18 chia hết cho ( x + 2) và ( x+ 2 ) chia hết cho 18
=> 18 = x + 2
=> x = 16