Tìm n thuộc Z để :
3n + 7 chia hết cho 3n + 7
bài 1: tìm n thuộc z để
1) n+7 chia hết cho n+3
2) 2n+5 chia hết cho n+3
3) 3n+1 chia hết cho 1-2n
4) 3n+2 chia hết cho 11-5n
#)Giải :
1) \(\frac{n+7}{n+3}=\frac{n+3+4}{n+3}=\frac{n+3}{n+3}+\frac{4}{n+3}=1+\frac{4}{n+3}\)
\(\Rightarrow n+3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Lập bảng xét các Ư(4) rồi chọn ra các gt thỏa mãn
a) Ta có: n + 7 = (n + 3) + 4
Do n + 3 \(⋮\)n + 3 => 4 \(⋮\)n + 3
=> n + 3 \(\in\)Ư(4) = {1; -1; 2; -2; 4; -4}
Lập bảng :
n + 3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | -2 | -4 | -1 | -5 | 1 | -7 |
Vậy ...
b) Ta có: 2n + 5 = 2(n + 3) - 1
Do 2(n + 3) \(⋮\)n + 3 => 1 \(⋮\)n + 3
=> n + 3 \(\in\)Ư(1) = {1; -1}
Với: n + 3 = 1 => n = 1 - 3 = -2
n + 3 = -1 => n= -1 - 3 = -4
Vậy ...
3) Đặt A = 3n + 1
=> 2A = 6n + 2 = -3(1 - 2n) + 5
Để A = 3n + 1 \(⋮\)1 - 2n <=> 2A \(⋮\)1 - 2n
Do -3(1 - 2n) \(⋮\)1 - 2n => 5 \(⋮\)1 - 2n
=> 1 - 2n \(\in\)Ư(5) = {1; -1; 5; -5}
Với: +)1 - 2n = 1 => 2n = 0 => n = 0
+)1 - 2n = -1 => 2n = 2 => n = 1
+) 1 - 2n = 5=> 2n = -4 => n = -2
+) 1 - 2n = -5 => 2n = 6 => n = 3
3) Đặt B = 3n + 2
=> 5B = 15n + 10 = -3(11 - 5n) + 21
Để B = 3n + 2 \(⋮\)11 - 5n <=> 5B \(⋮\)11 - 5n
Do -3(11 - 5n) \(⋮\)11 - 5n => 21 \(⋮\)11 - 5n
=> 11 - 5n \(\in\)Ư(21) = {1; -1; 3; -3; 7; -7; 21; -21}
Lập bảng :
11-5n | 1 | -1 | 3 | -3 | 7 | -7 | 21 | -21 |
n | 2 | 12/5(ktm) | 8/5(ktm) | 14/5(ktm) | 4/5(ktm) | 18/5(ktm) | -2 | 32(ktm) |
Vậy ...
Tìm n thuộc Z, để:
a) 10n + 4 chia hết cho 2n + 7
b) 5n - 4 chia hết cho 3n + 1
c) 2n^2 + n - 6 chia hết cho 2n +1
1/
$10n+4\vdots 2n+7$
$\Rightarrow 5(2n+7)-31\vdots 2n+7$
$\Rightarrow 31\vdots 2n+7$
$\Rightarrow 2n+7\in Ư(31)$
$\Rightarrow 2n+7\in \left\{1; -1; 31; -31\right\}$
$\Rightarrow n\in \left\{-3; -4; 12; -19\right\}$
2/
$5n-4\vdots 3n+1$
$\Rightarrow 3(5n-4)\vdots 3n+1$
$\Rightarroq 15n-12\vdots 3n+1$
$\Rightarrow 5(3n+1)-17\vdots 3n+1$
$\Rightarrow 17\vdots 3n+1$
$\Rightarrow 3n+1\in Ư(17)$
$\Rightarrow 3n+1\in \left\{1; -1; 17; -17\right\}$
$\Rightarrow n\in \left\{0; \frac{-2}{3}; \frac{16}{3}; -6\right\}$
Do $n$ nguyên nên $n\in\left\{0; -6\right\}$
3/
$2n^2+n-6\vdots 2n+1$
$\Rightarrow n(2n+1)-6\vdots 2n+1$
$\Rightarrow 6\vdots 2n+1$
$\Rightarrow 2n+1\in Ư(6)$
Mà $2n+1$ lẻ nên: $2n+1\in \left\{1; -1; 3; -3\right\}$
$\Rightarrow n\in \left\{0; -1; 1; -2\right\}$
Tìm n thuộc Z biết :
a)n+7 chia hết cho n+2
b) 3n+7 chia hết cho 2n+1
c)n^2+25 chia hết cho n+2
d)3n^2+5 chia hết cho n-1
e)2n^2+11 chia hết cho 3n+1
\(a)n+7⋮n+2\)
\(\Rightarrow n+2+5⋮n+2\)
Mà n + 2 chia hết cho n + 2 => \(5⋮n+2\)=> n + 2 thuộc Ư\((5)\)\(=\left\{\pm1;\pm5\right\}\)
Lập bảng :
n + 2 | 1 | -1 | 5 | -5 |
n | -1 | -3 | 3 | -7 |
Vậy : ...
Tìm n thuộc Z, biết:7-3n chia hết cho n
Để \(n\in Z\) thì \(7-3n\div n\) \(\rightarrow\int^{3n\div n}_{7\div n}\rightarrow n\inƯ\left(7\right)=\left\{+-1;+-7\right\}\)
Ta có bảng sau:
7n-3 | -1 | 1 | -7 | 7 |
7n | -4 | -2 | -10 | 4 |
n | \(\phi\) | \(\phi\) | \(\phi\) | \(\phi\) |
\(\rightarrow x\in\phi\)
Bài 11:a,Tìm các số nguyên x sao cho (4x-3) chia hết cho (x-2) b,Tìm n biết 5n+7 chia hết cho 3n+2 c,Tìm n thuộc Z,biết 3n+2 chia hết cho n-1
11,
a, 4x-3\(\vdots\) x-2 1
x-2\(\vdots\) x-2\(\Rightarrow\) 4(x-2)\(\vdots\) x-2\(\Rightarrow\) 4x-8\(\vdots\) x-2 2
Từ 1 và 2 ta có:
(4x-3)-(4x-8)\(\vdots\) x-2
\(\Rightarrow\) 4x-3-4x+8\(\vdots\) x-2
\(\Rightarrow\) 5 \(\vdots\) x-2
\(\Rightarrow\) x-2\(\in\) Ư(5)
\(\Rightarrow\) x-2\(\in\){-5;-1;1;5}
\(\Rightarrow\) x\(\in\) {-3;1;3;7}
Vậy......
Phần b và c làm tương tự như phần a pn nhé!
Tìm n thuộc Z để :
a) (n+4) chia hết cho n
b) (3n +7) chia hết cho n
c) ( 27 - 5n) chia hết cho n
a) n = -4 hoặc n = 4 hoặc n = 2 hoặc n = 1 hoặc n = -1
b) n = 7 hoặc n = -7 hoặc n = 1 hoặc n = -1
c) n = 27 hoặc n = -27 hoặc n = -9 hoặc n = 9 hoặc n = 3 hoặc n = -3.
Tìm n thuộc Z , sao cho:
a, 2n+7 chia hết cho n+1
b, 3n + 5 chia hết cho 7n -2
c, n^2 + 3n +1 chia hết cho n+2
a. \(2n+7⋮n+1\)
Mà \(n+1⋮n+1\)
\(\Leftrightarrow\hept{\begin{cases}2n+7⋮n+1\\2n+2⋮n+1\end{cases}}\)
\(\Leftrightarrow5⋮n+1\)
\(\Leftrightarrow n+1\inƯ\left(5\right)\)
Suy ra :
+) n + 1 = 1 => n = 0
+) n + 1 = 5 => n = 4
Vậy ........
tìm n thuộc Z sao cho :
a , 3n +2 chia hết cho n - 1
b , 3n + 24 chia hết cho n +7
c , 3n +2 chia hết cho 2n - 1
giải nhanh giúp mình nha
(3n+2):(n-1) = 3 + 5/(n-1)
a)Để 3n+2 chia hêt cho n-1
thì n-1 phải là ước của 5
do đó:
n-1 = 1 => n = 2
n-1 = -1 => n = 0
n-1 = 5 => n = 6
n-1 = -5 => n = -4
Vậy n = {-4; 0; 2; 6}
thì 3n+2 chia hêt cho n-1.
c)3n+2 chia hết cho 2n-1
6n-3n+2 chia hết cho 2n-1
3(2n-1)+2 chia hết cho 2n-1
=>2 chia hết cho 2n-1 hay 2n-1 thuộc Ư(2)={1;-1;2;-2}
=>2n thuộc{2;0;3;-1}
=>n thuộc{1;0}
3n + 2 ⋮ n - 1
=> 3n - 3 + 5 ⋮ n - 1
=> 3(n - 1) + 5 ⋮ n - 1
=> 5 ⋮ n - 1
=> ...
tìm n thuộc Z:
3n-7 chia hết cho n-2
Vì n-2 * n-2 => 3(n-2) * n-2 => 3n-6 * n-2
=> 3n-7 - (3n - 6) * n-2 => -1 * n-2 => n-2 = 1 => n = 3
hoặc n-2 = -1 => n = 1
Vậy n=3 hoặc n=1
3n-7 chia hết cho n-2
=> 3n-6-1 chia hết cho n-2
Vì 3n-6 chia hết cho n-2
=> 1 chia hết cho n-2
=> n-2 thuộc Ư(1)
=> n-2 thuộc {1; -1}
=> n thuộc {3; 1}
3n-7 chia hết cho n-2
=>3n-6-1 chia hết cho n-2
=>1 chia hết cho n-2
=>n-2\(\in\){-1;1}
=>n\(\in\){1;3}