CHo A=1/2^2 +1/3^2+...1/2018^2 . Chứng minh 2017/4038 >A>2017/2018
cho A =2018/2017^2+1 + 2018/2017^2+2 +...+2018/2017^2+201
chứng minh rằng 1<A<2
làm hộ mình
Cho A=1-2018+2018^2-2018^3+...-2018^2017+2018^2018. Chứng minh 2019.A-1 là 1 lũy thừa của 2018
2018 A = 2018 - 2018^2 + 2018^3 +...- 2018^2018 + 2018^2019
=> A + 2018 A = 1 +2018^2019
=> 2019 A = 1 + 2018^2019
=> 2019 A - 1 = 2018^2019
=> 2019 A -1 là 1 lũy thừa của 2018
BT1: Cho A = \(\dfrac{1}{2017}+\dfrac{2}{2017^2}+\dfrac{3}{2017^3}+...+\dfrac{2017}{2017^{2017}}+\dfrac{2018}{2017^{2018}}\)
Chứng minh rằng : A < \(\dfrac{2017}{2016^2}\)
cho A =1+2^2018+3^2017+4^2016+...+2018^2+2019,B=1+2^2017+3^2016+...+2017^2+2018,chứng tỏ giá trị biểu thức A-3B dương
cho A =1+2^2018+3^2017+4^2016+...+2018^2+2019,B=1+2^2017+3^2016+...+2017^2+2018,chứng tỏ giá trị biểu thức A-3B dương
Cho tổng A=\(\frac{2018}{2017^2+1}+\frac{2018}{2017^2+2}+\frac{2018}{2017^2+3}+...+\frac{2018}{2017^2+n}+...+\frac{2018}{2017^2+2017}\)
(A có 2017 số hạng). Chứng tỏ A không là số nguyên
A=\(\frac{2018}{2017^2+1}+\frac{2018}{2017^2+2}+..........+\frac{2018}{2017^2+2017}\)
>\(\frac{2018}{2017^2+2017}+\frac{2018}{2017^2+2017}+........+\frac{2018}{2017^2+2017}\)
\(=\frac{2018}{2017^2+2017}.2017=\frac{2018.2017}{2017\left(2017+1\right)}=1\) (1)
Lại có:A<\(\frac{2018}{2017^2+1}+\frac{2018}{2017^2+1}+.........+\frac{2018}{2017^2+1}\)
\(=\frac{2018}{2017^2+1}.2017=\frac{2018.2017}{2017^2+1}=\frac{2017.\left(2017+1\right)}{2017^2+1}\)
\(=\frac{2017^2+2017}{2017^2+1}=\frac{2017^2+1+2016}{2017^2+1}=1+\frac{2016}{2017^2+1}< 2\) (2)
Từ (1) và (2) suy ra:1 < A < 2
Vậy A không phải là số nguyên
45612223698++56456+89575637259415767549846574257
\(A=\frac{1}{2017}+\frac{2}{2017^2}+\frac{3}{2017^3}+...+\frac{2017}{2017^{2017}}+\frac{2018}{2017^{2018}}\). Chứng minh rằng : A < \(\frac{2017}{2016^2}\)
Cho A=1+2+2^2+2^3+...+2^2017. Chứng minh rằng A=2^2018 -1.
\(A=1+2+2^2+2^3+...+2^{2017}\)
\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{2018}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{2018}\right)-\left(1+2+2^2+...+2^{2017}\right)\)
\(\Rightarrow A=2^{2018}-1\left(đpcm\right)\)
\(A=1+2+2^2+2^3+...+2^{2017}\)
\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{2018}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{2018}\right)\)\(-\left(1+2+2^2+...+2^{2017}\right)\)
\(\Rightarrow A=2^{2018}-1\)
A=1+2+2^2+2^3+...+2^2017
2A=2+2^2+2^3+2^4+...2^2018
=> A= 2A - A = 2+2^2+2^3+2^4+...+2^2018-1+2+2^2+2^3+...+2^2017
=>A=2^2018-1
hok tốt!
Cho A = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}\)
Chứng minh : \(\frac{2017}{2018} > A > \frac{2008}{2018} \)
Ta có : \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2018^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2017.2018}\)
Xét B = \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2017.2018}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)
=\(1-\frac{1}{2018}\)
Xét : \(\frac{2018}{2018}=1\)=) B < 1
khoan hình như sai đề