Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tran Thi Xuan
Xem chi tiết
Võ Thị Quỳnh Giang
19 tháng 8 2017 lúc 8:37

1) ta có: a(b^2 -1)(c^2 -1)+b(a^2 -1)(c^2 -1)+c(a^2-1)(b^2-1)

=(ab^2 -a)(c^2-1)+(ba^2 -b)(c^2-1)+(ca^2-c)(b^2-1)

 đén đây nhân bung ra hết rồi rút gọn và thay a+b+c=abc là đc

Thư Anh Nguyễn
Xem chi tiết
Witch Rose
29 tháng 6 2019 lúc 10:42

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\Leftrightarrow\frac{ab+bc+ac}{abc}=1\Leftrightarrow ab+bc+ac=abc\)

kết hợp gt: a+b+c=1

\(\Rightarrow abc-ab-ac-bc+a+b+c-1=0\Leftrightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)=0\left(đpcm\right)\)

Nguyễn Thị Hồng Linh
Xem chi tiết
Nguyễn Linh Chi
24 tháng 6 2019 lúc 11:28

Ta có: \(\frac{ab+c}{c+1}=\frac{ab+1-a-b}{c+a+b+c}=\frac{-b\left(1-a\right)+\left(1-a\right)}{\left(a+c\right)+\left(b+c\right)}\)

\(=\frac{\left(1-a\right)\left(1-b\right)}{\left(a+c\right)+\left(b+c\right)}=\frac{\left(b+c\right)\left(a+c\right)}{\left(a+c\right)+\left(b+c\right)}\)

\(\le\frac{1}{4}\left(\frac{\left(b+c\right)\left(a+c\right)}{a+c}+\frac{\left(b+c\right)\left(a+c\right)}{b+c}\right)=\frac{a+b+2c}{4}\)

Tương tự: \(\frac{bc+a}{a+1}=\frac{b+c+2a}{4}\)

\(\frac{ca+b}{b+1}=\frac{c+a+2b}{4}\)

Cộng vế theo vế ta có: 

\(\frac{ab+c}{c+1}+\frac{bc+a}{a+1}+\frac{ca+b}{b+1}\le\frac{4a+4b+4c}{4}=a+b+c=1\)

Nguyễn Linh Chi
24 tháng 6 2019 lúc 11:30

Thiếu: 

Dấu "=" xảy ra khi và chỉ khi:

\(\frac{1}{a+b}=\frac{1}{a+c};\frac{1}{a+c}=\frac{1}{b+c};\frac{1}{b+c}=\frac{1}{b+a};a+b+c=1\)

<=> a=b=c=1/3

Vũ Bùi Nhật Linh
Xem chi tiết
Khuê Nguyễn Minh
Xem chi tiết
Jenner
Xem chi tiết
Jenner
31 tháng 7 2021 lúc 20:18

Giúp mình với ạ TT!!!

Linh_Chi_chimte
Xem chi tiết

Áp dụng BĐT cô si với hai số không âm, Ta có: 

\(\left(a+b+c\right)^2=1\ge4a\left(b+c\right)\)

\(\Leftrightarrow b+c\ge4a\left(b+c\right)^2\)

Mà \(\left(b+c\right)^2\ge4bc\forall b,c\ge0\)

\(\Rightarrow b+c\ge16abc\)

Dấu "=" xảy ra khi: 

\(\hept{\begin{cases}a+b+c=1\\b=c\\a=b+c\end{cases}}\Rightarrow\hept{\begin{cases}a=\frac{1}{2}\\b=c=\frac{1}{4}\end{cases}}\)

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Leftrightarrow3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge9\)

\(\Leftrightarrow\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge6\)

Áp dụng BĐT Cô si với 2 số dương ta có: 

\(\frac{a}{b}+\frac{b}{a}\ge2,\frac{b}{c}+\frac{c}{b}\ge2,\frac{c}{a}+\frac{a}{c}\ge2\)

\(\Leftrightarrow\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge6\)(đúng) 

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)(do a+b+c=1)

Nguyen Long
Xem chi tiết
Rhider
Xem chi tiết