Cmr 7/12 < A< 5/6
Biết A=1-1/2+1/3-1/4+...+1/47-1/48+1/49-1/50
Cmr 7/12 < A< 5/6
Biết A=1-1/2+1/3-1/4+...+1/47-1/48+1/49-1/50
Cmr 7/12 < A< 5/6
Biết A=1-1/2+1/3-1/4+...+1/47-1/48+1/49-1/50
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{47}-\frac{1}{48}+\frac{1}{49}-\frac{1}{50}=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+....+\frac{1}{25}\right)\)\(=\frac{1}{26}+...+\frac{1}{50}\)
Tinh ti so a/b
A= 1/2+1/3+1/4+.....+1/48+1/49+1/50
B= 1/49+2/48+3/47+.....+48/2+49/1
Tính S/P biết:
S = 1/2 + 1/3 + 1/4 + 1/5 + ... + 1/49 + 1/50
P = 1/49 + 2/48 + 3/47 + ... + 48/2 +49/1
So sánh tổng : S = 1/5 + 1/9 + 1/10 + 1/41 + 1/42 với 1/2
S=
=50/50+50/49+50/48+...+50/2
=50.(1/50+1/49+1/48+...+1/4+1/3+1/2)
=50
P=
P=(1/49+1)+(2/48+1)+...+(48/2+1)+1
P= 50/49+50/48+....+50/2+50/50=1
vậy s/p = 1/50
cho p=1/2+1/3+1/4+…+1/47+1/48+1/49+1/50
q=1/49+2/48+3/49+…47/3+48/2+49/1
tính p/q
A) A= - ( 5 - 6 ) - ( 3-4+5-7)
B) P = ( 1+3+5+...+47+49)-(2+4+6+...+48+50)
A = - ( 5 - 6 ) - ( 3 - 4 + 5 - 7 )
A = -5 + 6 - 3 + 4 - 5 + 7
A = ( 6 + 4 ) + ( -5 + (-5) ) + ( -3 + 7 )
A = 10 + (-10) + 4
A = 0 + 4
A = 4
P = ( 1 + 3 + 5 + ... + 47 + 49 ) - ( 2 + 4 + 6 + ... + 48 + 50 )
P = \(\frac{\left(1+49\right)\cdot\left(\left(49-1\right):2+1\right)}{2}\) - \(\frac{\left(2+50\right)\cdot\left(\left(50-2\right):2+1\right)}{2}\)
P = \(625-650\)
P = \(-25\)
cho A = 1/2 + 1/3 + 1/4 + ... +1/50
CHO C = 49/1 + 48/2 + 47/3 +...+ 2/48 + 1/49 = 50.A
chứng tỏ C không phải là số tự nhien
=> \(A=\frac{\left(\frac{49}{1}+\frac{48}{2}+...+\frac{1}{49}\right)}{50}=\frac{49}{50.1}+\frac{48}{50.2}+...+\frac{1}{50.49}\)
=> \(A=\frac{50-1}{50.1}+\frac{50-2}{50.2}+...+\frac{50-49}{50.49}\)
=> \(A=\left(\frac{50}{50.1}+\frac{50}{50.2}+...+\frac{50}{50.49}\right)-\left(\frac{1}{50.1}+\frac{2}{50.2}+...+\frac{49}{50.49}\right)\)
=> \(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}\right)-\left(\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)\) ( có 49 số 1/50 )
=> \(A=1+\frac{1}{2}+...+\frac{1}{49}-\frac{49}{50}=\left(1-\frac{49}{50}\right)+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}\)
=> \(A=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\)
Vậy A không phải là số tự nhiên
a) 99-97+95-93+91-89+ ..... +7-5+3-1
b) 50-49+48-47+46-45+.....+4-3+2-1
Số số hạng của dãy :
( 99 - 1 ) : 2 + 1 = 50 số
Mỗi cặp có 2 số hạng
⇒ Có số cặp là : 50 : 2 = 25 cặp
Mỗi cặp có kết quả = 2
⇒ Kết quả = 2 . 25 = 50
tính nhanh
a) 99 - 97 + 95 - 93 + 91 -89 + ... +7-5+3-1
b) 50-49+48-47+46-45+...+4-3+2-1