Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Taeyeon SNSD
Xem chi tiết
Lê Nguyên Hạo
Xem chi tiết
Hoàng Lê Thành Đức
Xem chi tiết
congchuabaobinh
2 tháng 5 2017 lúc 15:14

theo mình là A

Taeyeon SNSD
Xem chi tiết
Hạo LÊ
Xem chi tiết
Lê Nguyên Hạo
8 tháng 9 2016 lúc 19:09

Hoàng Lê Bảo NgọcTrần Việt LinhNguyễn Huy TúNguyễn Huy ThắngSilver bulletPhương AnĐinh Tuấn ViệtNguyễn Thế BảoNguyễn Thị Anh

Ken Tom Trần
8 tháng 9 2016 lúc 19:11

=(7k+3+88k)(60k^3+\(\frac{4}{k}\))

=(95k+3)(60k^3+\(\frac{4}{k}\))

phần còn lại tự lm nha

ronaldo
8 tháng 9 2016 lúc 21:12

2121212121

 

Asdfasdf Asdfasdf
Xem chi tiết
Mysterious Person
30 tháng 6 2018 lúc 18:20

bài này hơi rắc rối ; bạn nên sử dụng phương pháp qui nạp toán học 2 lần

với \(k=1\) ta có : \(5k^4+10k^3+10k^2+5k=30⋮3\)

giả sữ : \(k=n\) thì ta có : \(5n^4+10n^3+10n^2+5n⋮30\)

khi đó với \(k=n+1\) thì ta có :

\(5k^4+10k^3+10k^3+5k=5\left(n+1\right)^4+10\left(n+1\right)^3+10\left(n+1\right)^2+5\left(n+1\right)\)

\(=5\left(n^4+4n^3+6n^2+4n+1\right)+10\left(n^3+3n^2+3n+1\right)+10\left(n^2+2n+1\right)+5\left(n+1\right)\)

\(=5n^4+10n^3+10n^2+5n+20n^3+60n^2+70n+30\)

giờ ta chỉ cần chứng minh \(20n^3+60n^2+70n+30⋮30\) là được

với \(n=1\) ta có : \(20n^3+60n^2+70n+30=180⋮3\)

giả sữ : \(n=a\) thì ta có : \(20a^2+60a^2+70a+30⋮3\)

khi đó với \(n=a+1\) thì ta có :

\(20\left(n\right)^3+60n^2+70n+30=20\left(a+1\right)^3+60\left(a+1\right)^2+70\left(a+1\right)+30\)

\(=20\left(a^3+3a^2+3a+1\right)+60\left(a^2+2a+1\right)+70\left(a+1\right)+30\)

\(=20a^3+60a^2+70a+30+60a^2+180a+150⋮3\)

\(\Rightarrow20n^3+60n^2+70n+30⋮30\)

\(\Rightarrow5k^4+10k^3+10k^2+5k⋮30\)

vậy \(5k^4+10k^3+10k^2+5k\) chia hết cho \(30\) với \(k\in N^{\circledast}\) (đpcm)

Hồ Thị Ngọc Như
Xem chi tiết
Nguyễn Thiều Công Thành
Xem chi tiết
Linh Nguyễn
Xem chi tiết

Chọn C