Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Hữu Ngọc Minh
Xem chi tiết
Hoàng Minh Hoàng
4 tháng 8 2017 lúc 8:25

Bt=4/2ab+3/(a^2+b^2)=1/2ab+3(1/2ab+1/a^2+b^2)

>=1/2ab+3.4/(a+b)^2(BĐT Cauchuy-Swartch)

>=2/4ab+12/(a+b)^2>=2(a+b)^2+12/(a+b)^2=14/(a+b)^2=1

Dấu= xảy ra khi a=b=1/2

Hanayo Heartfilia
17 tháng 10 2017 lúc 18:29

ab là 1/2

Lương Nhật Vỹ
15 tháng 5 2018 lúc 12:29

a/b là 1/2

Anh Pha
Xem chi tiết
Nguyễn Hoàng Anh
5 tháng 10 2018 lúc 19:52

cm sao bạn 

Anh Pha
5 tháng 10 2018 lúc 20:08

=<3/4

Pham Thi Thanh Thuy
Xem chi tiết
Nguyễn Thiều Công Thành
12 tháng 7 2017 lúc 22:58

mẫu phải là mũ 2 chứ,sao lại mũ 3 zậy bn

Pham Thi Thanh Thuy
12 tháng 7 2017 lúc 23:03

mũ 2 và mũ 3 nha bạn. cả 2 cái cách làm tương tự nhau.nếu bạn ko làm đc mũ 3, bn có thể làm mũ 2 chi mình xem đc ko

Nguyễn Thiều Công Thành
13 tháng 7 2017 lúc 8:14

làm thì làm được nhưng mũ 3 rắc rối hơn

 ta có:

\(\frac{a^2}{a+2b^3}=a-\frac{2ab^3}{a+2b^3}\ge a-\frac{2ab^3}{3b^2\sqrt[3]{a}}=a-\frac{2b\sqrt[3]{a^2}}{3}\)

tương tự như thế 

\(\frac{b^2}{b+2c^3}\ge a-\frac{2c\sqrt[3]{b^2}}{3};\frac{c^2}{c+2a^3}\ge c-\frac{2a\sqrt[3]{c^2}}{3}\)

áp dụng bất đẳng thức cô si ta có:

\(b\sqrt[3]{a^2}\le\frac{2a+b}{3};c\sqrt[3]{b^2}\le\frac{2b+c}{3};a\sqrt[3]{c^2}\le\frac{2c+a}{3}\)

\(\Rightarrow\frac{a^2}{a+2b^3}+\frac{b^2}{b+2c^3}+\frac{c^2}{c+2a^3}\ge a+b+c-\frac{4a+2b}{9}-\frac{4b+2c}{9}-\frac{4c+2a}{9}=3-2=1\)

dấu "=" xảy ra khi a=b=c=1

Hoàng Phúc
Xem chi tiết
Thắng Nguyễn
23 tháng 8 2016 lúc 12:09

\(VT=\frac{3a}{1+b^2}+\frac{3b}{1+c^2}+\frac{3c}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}+\frac{1}{1+a^2}\)

Ta tách VT=A+B và xét

\(A=\frac{3a}{1+b^2}+\frac{3b}{1+c^2}+\frac{3c}{1+a^2}=\text{∑}\left(3a-\frac{3ab^2}{1+b^2}\right)\ge\text{∑}\left(3a-\frac{3ab}{2}\right)\)

\(B=\frac{1}{1+b^2}+\frac{1}{1+c^2}+\frac{1}{1+a^2}=\text{∑}\left(1-\frac{b^2}{1+b^2}\right)\ge\text{∑}\left(1-\frac{b}{2}\right)\)

\(\Rightarrow VT=A+B=3+\frac{5}{2}\left(a+b+c\right)-\frac{3}{2}\text{∑}ab=\frac{5}{2}\left(a+b+c\right)-\frac{3}{2}\ge\frac{15}{2}-\frac{3}{2}=6\)

(Do \(a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}=3\))

Dấu = khi a=b=c=1

Phạm Hữu Hiếu
11 tháng 1 2019 lúc 21:16

2 + 2 =22

Phạm Hữu Hiếu
3 tháng 3 2019 lúc 20:34

5555555555555 = 5 x 5 x ........

Bùi Nguyễn Hoài Anh
Xem chi tiết
Trần Thị Diễm Quỳnh
9 tháng 10 2015 lúc 21:15

câu a)

đặt A= vế trái

=>A=1/2ab+1/2ab+1/(a2+b2) (3)

(a+b)2>=4ab (tự cm)

=>1>=4ab

hay 4ab <=1

=>2ab<=1/2

=>1/2ab>=2  (1) 

sau đó áp dụng BĐT:1/x+1/y >= 4/(x+y) ta đc :

1/2ab+1/(a2+b2) >= 4/(a+b)2=4/1=4  (2)

từ (1),(2),(3)=>dpcm

neko chan
Xem chi tiết
manh nguyen
23 tháng 8 2016 lúc 17:59

khó phết

Yuzuri Yukari
23 tháng 8 2016 lúc 18:11

\(VT=\frac{3a}{1+b^2}+\frac{3b}{1+c^2}+\frac{3c}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}+\frac{1}{1+a^2}\)

Ta tách VT = A + b và xét :

\(A=\frac{3a}{1+b^2}+\frac{3b}{1+c^2}+\frac{3c}{1+a^2}=\Sigma\left(3a-\frac{3ab^2}{1+b^2}\right)\ge\Sigma\left(3a-\frac{3ab}{2}\right)\)\(B=\frac{1}{1+b^2}+\frac{1}{1+c^2}+\frac{1}{1+a^2}=\Sigma\left(1-\frac{b^2}{1+b^2}\right)\ge\Sigma\left(1-\frac{b}{2}\right)\)

\(\Rightarrow VT=A+B=3+\frac{5}{2}\left(a+b+c\right)-\frac{3}{2}\Sigma ab=\frac{5}{2}\left(a+b+c\right)-\frac{3}{2}\ge\frac{15}{2}-\frac{3}{2}=6\)( Do \(a+b+c\ge\sqrt{3\left(ab+bc+ca\right)=3}\))

Dấu = khi a = b = c = 1 .

Lightning Farron
23 tháng 8 2016 lúc 18:25

Yuzuri Yukari:copy câu trả lời của tôi 

Công Hồ Trung
Xem chi tiết
Vũ Phương Hoa
26 tháng 11 2015 lúc 16:09

AD bất đẳng thức cô si ta được:\(a^2+b^2\ge2ab\Rightarrow ab\le\frac{a^2+b^2}{2}=2\)                                                 AD bất đẳng thức bunhiacopxki ta được:\(\left(a+b\right)^2\le\left(a^2+b^2\right)\left(1^2+1^2\right)=4.2=8\Rightarrow\left(a+b\right)\le2\sqrt{2}\)                                       \(\Rightarrow\frac{ab}{a+b+2}\le\frac{2}{2\sqrt{2}+1}=\frac{1}{\sqrt{2}+1}\)                                                                                                    dấu "=" xảy ra khi và chỉ khi a=b=1

Khánh Vũ Trọng
Xem chi tiết
tth_new
7 tháng 8 2019 lúc 9:08

BĐT <=> \(\frac{2}{a^2+2}+\frac{2}{b^2+2}+\frac{2}{c^2+2}\le2\)

\(\Leftrightarrow1-\frac{a^2}{a^2+2}+1-\frac{b^2}{b^2+2}+1-\frac{c^2}{c^2+2}\le2\)

\(\Leftrightarrow\frac{a^2}{a^2+2}+\frac{b^2}{b^2+2}+\frac{c^2}{c^2+2}\ge1\)

Theo BĐT Svacxo:

\(VT\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+6}=\frac{a^2+b^2+c^2+2\left(ab+bc+ca\right)}{a^2+b^2+c^2+6}=\frac{a^2+b^2+c^2+6}{a^2+b^2+c^2+6}=1\)

Vậy ta có đpcm.

P/s: Đúng ko ta?

Nguyễn Thiều Công Thành
Xem chi tiết
Nguyễn Thiều Công Thành
23 tháng 8 2017 lúc 15:00

bđt phụ sai mà cũng ko đc chuẩn hóa

Witch Rose
23 tháng 8 2017 lúc 18:38

\(\frac{ab}{a^2+b^2}\le\frac{ab}{2ab}=\frac{1}{2}\)

tương tự \(\frac{\Rightarrow ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ac}{a^2+c^2}\le\frac{3}{2}\)

=>Thắng Nguyễn :cm theo cách đó sai

Thắng Nguyễn
23 tháng 8 2017 lúc 19:40

SOS cho khỏe :v 

WLOG \(a\ge b\ge c\)

Áp dụng BĐT AM-GM ta có:

\(b^2Σ_{cyc}\left(a^3+\frac{4ab}{a^2+b^2}-3\right)=b^2\left(Σ_{cyc}(a^3-abc)-2Σ_{cyc}\left(1-\frac{2ab}{a^2+b^2}\right)\right)\)

\(=b^2Σ_{cyc}(a-b)^2\left(\frac{a+b+c}{2}-\frac{2}{a^2+b^2}\right)=\frac{b^2}{2}Σ_{cyc}\frac{(a-b)^2((a+b+c)(a^2+b^2)-4abc)}{a^2+b^2}\)

\(\ge\frac{b^2}{2}Σ_{cyc}\frac{(a-b)^2((a+b+c)2ab-4abc)}{a^2+b^2}=b^2Σ_{cyc}\frac{(a-b)^2ab(a+b-c)}{a^2+b^2}\)

\(\ge\frac{b^2(a-c)^2ac(a+c-b)}{a^2+c^2}+\frac{b^2(b-c)^2bc(b+c-a)}{b^2+c^2}\)

\(\ge\frac{a^2(b-c)^2ac(a-b)}{a^2+c^2}+\frac{b^2(b-c)^2bc(b-a)}{b^2+c^2}\)

\(=\frac{abc^3(a+b)(b-c)^2(a-b)^2}{(a^2+c^2)(b^2+c^2)}\ge0\) (đúng :v)