Chứng minh rằng : hai số : 2017^100-1 và 2017^100+1 ko thể đồng thời là hai số nguyên tố
Hãy tính dùm mình với:
Chứng minh rằng: 2017100 – 1 và 2017100 + 1 không đồng thời là số nguyên tố?
Ta có:2017100=20174.25=...125=..1
Nên 2017100-1=...1-1=..0 chia hết cho 2(là hợp số)
2017100+1=..1+1=..2 chia hết cho 2(là hợp số)
Vậy 2017100-1&2017100+1 không là số nguyên tố(đpcm)
Chứng minh 2 số: 2017\(^{100}\)- 1 và 2017\(^{100}\) không thể đồng thời là số nguyên tố.
Ta có: 2017 là số lẻ
=> 2017100 là số lẻ
=>2017100-1 là số chẵn
Mà 2017100-1 lớn hơn2
=> 2017100-1 là hợp số
=> 2017100-1 và 2017100 không thể đồng thời là số nguyên tố
Chứng minh rằng hai số 1994.10100-1 và 1994.10100+1 không thể đồng thời là hai số nguyên tố.
* 1994 chia 1993 dư 1 => 1994^100 chia 1993 dư 1
=> 1994^100 - 1 chia hết cho 1993
hiển nhiên 1994^100 > 1993
=> 1994^100 - 1 là hợp số
* ta cũng có thể dùng khai triển nhị thức:
1994^100 - 1 = (1994-1)(1994^99 + 1994^98 + ... + 1)
=> 1994^100 - 1 là hợp số
--------------
tôi nghĩ chỉ cần cm một trong hai số là hợp số là xong, tuy nhiên như thế thì đề đưa ra 1994^100 + 1 để làm gì???
có lẽ ý người ra đề muốn giải theo cách khác!!!
1994^100 -1; 1994^100; 1994^100 +1 là 3 số tự nhiên liên tiếp, nên có 1 số chia hết cho 3
mà 1994 không chia hết cho 3 => 1994^100 không chia hết cho 3
=> trong 1994^100-1 và 1994^100+1 phải có 1 số chia hết cho 3 => chúng không đồng thời là số nguyên tố
Cho A = 2017100- 1
B = 2017100+1
Chứng minh A và B không đồng thời là số nguyên tố
cmr 2017 mũ 100-1 và 2017 mũ 100+1 ko thể cùng là số nguyên tố
AI TRẢ LỜI ĐC MK K CHO 19 LUN ( VÌ MK CÓ TỔNG CỘNG 19 NICK MÀ :D)
chứng minh rằng :
2008100 -1 và 2008100 +1 ko thể đồng thời là số nguyên tố
Chứng minh rằng: hai số 2008^100+1 và 2008^100-1 ko thể là hai số nguyên tố cùng nhau :)))
Giải nhanh giùm mình nha ^_^
Ban vao cau hoi tuong tu ma tham khao
k nha!>_<
chứng minh rằng 2 số 1994^100 - 1 và 1994^100+1 không thể đồng thời là số nguyên tố
* 1994 chia 1993 dư 1 => 1994^100 chia 1993 dư 1
=> 1994^100 - 1 chia hết cho 1993
hiển nhiên 1994^100 > 1993
=> 1994^100 - 1 là hợp số
* ta cũng có thể dùng khai triển nhị thức:
1994^100 - 1 = (1994-1)(1994^99 + 1994^98 + ... + 1)
=> 1994^100 - 1 là hợp số
--------------
tôi nghĩ chỉ cần cm một trong hai số là hợp số là xong, tuy nhiên như thế thì đề đưa ra 1994^100 + 1 để làm gì???
có lẽ ý người ra đề muốn giải theo cách khác!!!
1994^100 -1; 1994^100; 1994^100 +1 là 3 số tự nhiên liên tiếp, nên có 1 số chia hết cho 3
mà 1994 không chia hết cho 3 => 1994^100 không chia hết cho 3
=> trong 1994^100-1 và 1994^100+1 phải có 1 số chia hết cho 3 => chúng không đồng thời là số nguyên tố
1994 chia 1993 dư 1 => 1994^100 chia 1993 dư 1
=> 1994^100 - 1 chia hết cho 1993
hiển nhiên 1994^100 > 1993
=> 1994^100 - 1 là hợp số
* ta cũng có thể dùng khai triển nhị thức:
1994^100 - 1 = (1994-1)(1994^99 + 1994^98 + ... + 1)
=> 1994^100 - 1 là hợp số
--------------
tôi nghĩ chỉ cần cm một trong hai số là hợp số là xong, tuy nhiên như thế thì đề đưa ra 1994^100 + 1 để làm gì???
có lẽ ý người ra đề muốn giải theo cách khác!!!
1994^100 -1; 1994^100; 1994^100 +1 là 3 số tự nhiên liên tiếp, nên có 1 số chia hết cho 3
mà 1994 không chia hết cho 3 => 1994^100 không chia hết cho 3
=> trong 1994^100-1 và 1994^100+1 phải có 1 số chia hết cho 3 => chúng không đồng thời là số nguyên tố
TUI THẤY HÌNH NHƯ SKT_NXS COPPY OF VIỆT ANH HAY SAO Ý VÌ VIỆT ANH TRẢ LỜI LÚC 19 : 49 CÒN SKT_NXS TRẢ LỜI LÚC 19:53
Bài 1 :Chứng minh rằng hai số \(1994^{100}-1\)và \(1994^{100}+1\)không thể đồng thời là số nguyên tố
Bài 2 : Nếu p là số nguyên tố lớn hơn 3 và 2p+1 cũng là số nguyên tố thì 4p+1 là số nguyên tố hay hợp số
Bài 2 :
Với p là số nguyên tố lớn hơn 3 => p chỉ có dạng hoặc 3k + 1 hoặc 3k + 2
+ Nếu p = 3k + 1 => 2p + 1 = 2 . ( 3k + 1 ) + 1 = 6k + 2 + 1 = 6k + 3 \(⋮\)3 và lớn hơn 3 là hợp số ( loại )
Vì p ko có dạng 3k + 1 nên p có dạng 3k + 2
Với p = 3k + 2 thì 4p + 1 = 4 . ( 3k + 2 ) + 1 = 12k + 8 + 1 = 12k + 9 là hợp số
Vậy ...
Bài 1 :
Ta có \(1994^{100}-1,1994^{100},1994^{100}+1\) là 3 số tự nhiên liên tiếp nên phải có 1 số chia hết cho 3 mà \(1994^{100}\)có tổng các chữ số là \(1+9+9+4=123\)không chia hết 3 nên \(1994^{100}\)không chia hết cho 3 nên trong 2 số còn lại ít nhất có một số chia hết cho 3 ,số đó không thể là số nguyên tố
Vậy \(1994^{100}-1\)và \(1994^{100}+1\)không thể đồng thời là số nguyên tố
Bài 2
Do P là số nguyên tố lớn hơn 3 nên 4p không chia hết cho 3 ,tương tự \(4p+2=2\left(2p+4\right)\)cũng không chia hết cho 3
Mà \(4p,4p+1,4p+2\)là 3 số tự nhiên liên tiếp nên ít nhất phải có 1 số chia hêt cho 3 .Do đó \(4p+1⋮3\)mà \(4p+1>13\)nên \(4p+1\)là hợp số
Chúc bạn học tốt ( -_- )
Bài 1:
1994100 - 1; 1994100; 1994100 + 1 là 3 số tự nhiên liên tiếp
=> Sẽ có 1 trong số 3
1994 ko chia hết cho 3
=> 1994100 chia hết cho 3 (phải có 1 số chia hết cho 3 số đó là 1994100 - 1)
=> Chúng ko đồng thời là Số nguyên tố
Bài 2:
p là số tự nhiên > 3 nên có dạng: 3k + 1
3k + 2
Xét 2 trường hợp:
Th1: p = 3k + 1, ta có:
2p + 1 = 2(3k + 1) + 1 = 6k + 2 + 1 = 6k + 3 (do vì chia hết cho 3 nến => nó là hợp số) (loại)
Th2: p = 3k + 2, ta có:
2p = 1 = 2(3k + 2) + 1 = 6k + 4 + 1 = 6k + 5 (nhận)
Do: 4p + 1 = 4(3k + 2) + 1 = 12k + 8 + 1 = 12k + 9, ta thấy rằng:
12k và 9 đều chia hết cho 3 => (12k + 9) là hợp số
=> 4p + 1 là hợp số (đpcm).