Cho tam giác ABC vuông tại A đường phân giác của góc B cắt AC tại E .Kẻ EH vuông góc với BC ( H thuộc BC ) . K là giao điểm của BA và HE .CMR :
a ) tam giác ABE = tam giác HBE
b ) AH song song với KC
GIÚP HỘ NHA CẦN GẤP
cho tam giác ABC vuông tại A đường phân giác của góc B cắt AC tại E kẻ EH vuông góc với BC (H thuộc BC) K là giao điểm của BA va HE
Chứng minh rằng tam giác ABE= tam giác HBE
Chứng minh AH song song với KC
Cho tam giác ABC vuông tại A, phân giác BE(E thuộc AC). Kẻ EH vuông góc với BC tại H. Hai đường thẳng BA và HE cắt nhau tại K
a.Chứng minh tam giác ABE=tam giác HBE
b.Chứng minh BE là trung trực của đoạn thẳng AH và AH song song với KC
c.Chứng minh AB+AC>EH+BC
a, xét tg ABE và tg HBE có BE chung
^EAB = ^EHB = 90
^ABE = ^HBE do BE là pg của ^ABC (gt)
=> tg ABE = tg HBE (ch-gn)
Nhưng câu này mình biết làm rồi
Cho tam giác ABC vuông tại A,góc A bằng 60*.Tia phân giác B cắt góc AC tại E. Từ E vẽ EH vuông góc với BC (H THuộc BC )
Gọi M là giao điểm của HE và BA. Chứng minh
a,Tam giác ABE +tam giác HBE
b, AM=HC / c,Qua H vẽ HK//BE (K thuộc Ac)> Chứng minh TAm Giác EHK đều
d,GỌi N là giao điểm của BE và MC. So sánh MN và NC
1/Cho tam giác ABC vuông tại A, đường phân giác BE. Kẻ EH vuông góc với BC (H thuộc BC)
Gọi K là giao điểm của AH và BE. CMR:
a) tam giác ABE= tam giác HBE
b) BE là đường trung trực của AH
2/ Cho tam giác ABC cân tại A. Vẽ AH vuông góc với BC. CM:
a) tam giác AHB = tam giác HBE
b) Vẽ HM vuông AB, Hn vuông AC. CM: tam giác AMN cân
c) MN song song với BC
d) AH2 + BM2 = AN2 + BH2
Bài 1:a, Xét t/g ABE vs HBE có :
Chung cạnh huyền BE
góc A = H (= 90độ)
góc ABE = HBE
=> t/g ABE = HBE (ch_ gn)
b, vậy AE = EH ( t/ứng)
AEB = góc HEB
Xét t/g AKE vs HKE
có : AE = EH
Góc AEB = HEB
chung EK
=> 2 t/g = nhau
=> AK = KH => k là trung điểm AH (1)
=> góc AKE = HKE mà chúng kề bù => = 90 độ
hay AKB = 90 độ=>BE vuông góc vs AH (2)
từ 1 vs 2 => BE là đường trung trực của AH
DUYỆT NHA OLM !!!!!!!
Cho tam giác ABC vuông tại A, đường phân giác góc B cắt AC tại E. Vẽ EH vuông góc với BC (H thuộc BC). Gọi K là giao điểm của BA và HE. Chứng minh rằng:
a ) Tam giác ABE = tam giác HBE
b ) BE là đường trung trực của đoạn thẳng AH
c ) EC =EK
hình bn tự vẽ nha
a)Xét Tam giác ABE và tam giác HBEcó
góc BAE= góc BHE(= 90 độ)
cạnh BE chung
góc ABE=góc HBE(giả thiết)
=> Tam giác ABE = tam giác HBE(c/h-g/n)
b) VÌ Tam giác ABE = tam giác HBE(cmt)
=>BA=BH(2 cạnh tương ứng)
=>B thuộc đường trung trực của AH
=>BE là đường trung trực của đoạn thẳng AH
c) VÌ Tam giác ABE = tam giác HBE(cmt)
=>AE=HE(2 cạnh tương ứng)
Xét tam giác AEK và tam giác HEC có
góc KAE=CHE(= 90 độ)
AE=HE
góc AEK=góc HEC(= 90 độ)
=>tam giác AEK = tam giác HEC(g.c.g)
=>Ek=EC(2 cạnh tương ứng)
a)Xét \(\Delta\) ABE và \(\Delta\)HBE có:
góc BAE= góc BHE(= 90 độ)
cạnh BE chung
góc ABE=góc HBE(giả thiết)
=> \(\Delta\)ABE = \(\Delta\)HBE(c/h-g/n)
b) VÌ \(\Delta\)ABE = \(\Delta\)HBE(cmt)
=>BA=BH(2 cạnh tương ứng)
=>B thuộc đường trung trực của AH
=>BE là đường trung trực của đoạn thẳng AH
c) VÌ \(\Delta\)ABE = \(\Delta\)HBE(cmt)
=>AE=HE(2 cạnh tương ứng)
Xét \(\Delta\)AEK và \(\Delta\)HEC có
góc KAE=CHE(= 90 độ)
AE=HE
góc AEK=góc HEC(= 90 độ)
=>\(\Delta\)AEK =\(\Delta\)HEC(g.c.g)
=>Ek=EC(2 cạnh tương ứng)
cho tam giác ABC vuông tại A , đường phân giác BE. kẻ EH vuông góc với BC ( H thuộc BC). gọi K là giao điểm của AH và BE
a , CMR : tam giác ABE bằng tam giác HBE
b, BE là đường trung trực của AH
Cho tam giác ABC vuông tại A,đường phân giác của góc B cắt AC tại E.VễH vuông góc với BC (H thuộc BC).Gọi K là giao điểm của BA và HE.CM: a)tam giác ABE = tam giác HBE b)BE là đường trung trực của AH c)EC=EK
a) Xét tam giác vuông ABE và tam giác vuông HBE (^BAE = ^BHE = 90o)
BE chung
^ABE = ^HBE (BE là phân giác ^ABC)
=> tam giác vuông ABE = tam giác vuông HBE (ch - gn)
b) Ta có: AE = HE (tam giác vuông ABE = tam giác vuông HBE)
=> E thuộc đường trung trực của AH (1)
Ta có: AB = HB (tam giác vuông ABE = tam giác vuông HBE)
=> B thuộc đường trung trực của AH (2)
Từ (1) và (2) => BE là đường trung trực của AH (đpcm)
c) Ta có: ^BEK = ^BEA + ^AEK
^BEC = ^BEH + ^HEC
Mà ^BEA = ^BEH (tam giác vuông ABE = tam giác vuông HBE)
^AEK = ^HEC (2 góc đối đỉnh)
=> ^BEK = ^BEC
Xét tam giác BEK và tam giác BEC:
^BEK = ^BEC (cmt)
^KBE = ^CBE (BE là phân giác ^ABC)
BE chung
=> tam giác BEK = tam giác BEC (g - c - g)
=> EK = EC (cặp cạnh tương ứng)
Cho tam giác ABC vuông tại A. Đường phân giác góc ABC cắt AC ở E. Kẻ EH vuông góc với BC {H thuộc BC}.Đường thẳng HE cắt AB ở K
a,Chứng minh tam giác ABE = tam giác HBE đó suy ra BE là Đường trung trực của AH
b,Chứng minh BE vuông góc với CK
a, xét tam giác ABE và tam giác HBE có : BE chung
góc ABE = góc HBE do BE là phân giác
góc BAE = góc BHE = 90
=> tam giác ABE = tam giác HBE (ch - gn)
Cho tam giác ABC vuông tại A, đường phân giác BE. Kẻ EH vuông góc với BC (H thuộc BC). Gọi K là giao điểm của AB và HE. Chứng minh rằng
a, tam giác ABE = tam giác HBE
b, BE là đường trung trực của đoạn thẳng AH
c, Tam giác EKC cân
a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
góc ABE=góc HBE
=>ΔABE=ΔHBE
b: ΔBAE=ΔBHE
=>BA=BH và EA=EH
=>BE là trung trực của AH
c: Xét ΔEAK vuông tại A và ΔEHC vuông tại H có
EA=EH
góc AEK=góc HEC
=>ΔEAK=ΔEHC
=>EK=EC
=>ΔEKC cân tại E