Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
vietha2k9
Xem chi tiết
Hắc Hoàng Thiên Sữa
28 tháng 5 2021 lúc 16:48

Ta Có:

Cho biểu thức trên là B

\(b\)\(=\)\(10\)\(^n\)\(72n\)\(-1\)

 \(=10\)\(^n\)\(+72n\)\(-1\)

\(=10^{n^{ }}\)\(-1\)(có n\(-1chữ\) số 9)=9\(x\)(11....1)(có n chữ số 1)

B= 10n-1+72n=9x(11....1)+72n 

=>B:9=11....1+8n=11....1-n+9n

Ta Thấy:11....1 có n chữ số1 có tổng các chữ số là n

=>11....1-n chia hết cho 9

=>B:9=11....1-n+9n chia hết cho 9

Vậy B chia hết cho 81

Ta Có:

Cho biểu thức trên là B

bb==1010nn72n72n−1−1

 =10=10nn+72n+72n−1−1

=10n=10n−1−1(có n−1chữ−1chữ số 9)=9xx(11....1)(có n chữ số 1)

B= 10n-1+72n=9x(11....1)+72n 

=>B:9=11....1+8n=11....1-n+9n

Ta Thấy:11....1 có n chữ số1 có tổng các chữ số là n

=>11....1-n chia hết cho 9

=>B:9=11....1-n+9n chia hết cho 9

Vậy B chia hết cho 81

Nguyễn Thị Hoài Thu
Xem chi tiết
Kẻ Bí Mật
1 tháng 1 2016 lúc 21:06

10^n+72n-1 
=10^n-1+72n 
=(10-1)[10^(n-1)+10^(n-2)+...+10+1]+72n 
=9[10^(n-1)+10^(n-2)+...+10+1]-9n+81n 
=9[10^(n-1)+10^(n-2)+...+10+1-n]+81n 
=9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n 
ta có 10^k - 1 = (10-1)[10^(k-1)+...+10+1] chia hết cho 9 =>9[(10^(n-1)-1) +(10^(n-2)-1) +... +(10-1) +(1-1)] chia hết cho 81 =>9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n chia hết cho 81 =>đpcm.

Vũ Thu Hiền
Xem chi tiết
Bùi Vĩnh Hà
Xem chi tiết
trần thị thu thủy
Xem chi tiết
Phạm Tuấn Kiệt
24 tháng 11 2015 lúc 15:10

10^n+72n-1 
=10^n-1+72n 
=(10-1)[10^(n-1)+10^(n-2)+...+10+1]+72n 
=9[10^(n-1)+10^(n-2)+...+10+1]-9n+81n 
=9[10^(n-1)+10^(n-2)+...+10+1-n]+81n 
=9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n 
Ta có:

10^k - 1 = (10-1)[10^(k-1)+...+10+1] chia hết cho 9

=>9[(10^(n-1)-1) +(10^(n-2)-1) +... +(10-1) +(1-1)] chia hết cho 81

=>9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n chia hết cho 81

=>đpcm.

tuan pham thi tuan
Xem chi tiết
Nguyen tien dung
Xem chi tiết
oOo Tôi oOo
11 tháng 4 2016 lúc 20:25

Gọi biểu thức trên là A.

Ta có:

A = 10n + 72n - 1

= 10n - 1 + 72n

10n - 1 = 999...999 (có n chữ số 9) = 9 x (111...111) (có n chữ số 1)

A = 10n - 1 + 72n = 9 x (111...111) + 72n 

=> A : 9 + 8n = 111...111 - n + 9n

Ta thấy: 111...111 có n chữ số 1 có tổng các chữ số là n

=> 111...111 - n chia hết cho 9

=> A : 9 = 111...111 - n + 9n chia hết cho9

<=> A chia hết cho 81

=> ĐPCM

10^n+72n-1 
=10^n-1+72n 
=(10-1)[10^(n-1)+10^(n-2)+...+10+1]+72n 
=9[10^(n-1)+10^(n-2)+...+10+1]-9n+81n 
=9[10^(n-1)+10^(n-2)+...+10+1-n]+81n 
=9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n 
ta có 10^k - 1 = (10-1)[10^(k-1)+...+10+1] chia hết cho 9 =>9[(10^(n-1)-1) +(10^(n-2)-1) +... +(10-1) +(1-1)] chia hết cho 81 =>9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n chia hết cho 81 =>đpcm.

tích nha

Nguyễn Thị Hà Phương
Xem chi tiết
shitbo
20 tháng 11 2018 lúc 10:28

10n+72-1=10n-1-9n+81n

=999.....99(n chữ số)-9n+81n

=9(1111...1(n chữ số)+n)+81n

Ta dễ thấy rằng 111..1(n chữ số) và n có cùng số dư khi chia cho 9

nên 1111...1(n chữ số)-n chia hết cho 9

=> 9(111...1(n chữ số)-n) chia hết cho 81

Mà 81n cũng chia hết cho 81

=> 10n+72n-1 chia hết cho 81 với 

n E N

Trần Văn Hùng
20 tháng 11 2018 lúc 10:31

như shitbo đó,tk mk vs nha,please

Đào Thị Quỳnh Giang
20 tháng 11 2018 lúc 10:46

Ta có:

 \(10^n+72n-1\)

=\(10^n-1+72n\)

=\(\left(10-1\right)\left(10^{n-1}+10^{n-2}+...+10+1\right)+72n\)

=\(9\left(10^{n-1}+10^{n-2}+...+10+1\right)-9n+81n\)

=\(9\left(10^{n-1}+10^{n-2}+...+10+1-n\right)+81n\)

=\(9\left[\left(10^{n-1}+1\right)+\left(10^{n-2}+1\right)+...+\left(10-1\right)\left(1-1\right)\right]+81n\)

Vì:

 \(10^n-1=\left(10-1\right)\left(10^{n-1}+...+10+1\right)⋮9\)

\(\Rightarrow\)\(9\left[\left(10^{n-1}+1\right)+\left(10^{n-2}+1\right)+...+\left(10-1\right)\left(1-1\right)\right]⋮81\)

\(\Rightarrow\)\(9\left[\left(10^{n-1}+1\right)+\left(10^{n-2}+1\right)+...+\left(10-1\right)\left(1-1\right)\right]+81n⋮81\)

\(\Rightarrow10^n+72n-1⋮81\left(đpcm\right)\)

Nguyễn Ngọc Uyên Phương
Xem chi tiết