Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hyun mau
Xem chi tiết
Doraemon
Xem chi tiết
Nguyễn Ngọc Lộc
23 tháng 2 2020 lúc 17:48

Ta có : \(\frac{x^2-2008}{2007}+\frac{x^2-2007}{2006}+\frac{x^2-2006}{2005}=\frac{x^2-2005}{2004}+\frac{x^2-2004}{2003}+\frac{x^2-2003}{2002}\)

=> \(\frac{x^2-2008}{2007}+1+\frac{x^2-2007}{2006}+1+\frac{x^2-2006}{2005}+1=\frac{x^2-2005}{2004}+1+\frac{x^2-2004}{2003}+1+\frac{x^2-2003}{2002}+1\)

=> \(\frac{x^2-2008}{2007}+\frac{2007}{2007}+\frac{x^2-2007}{2006}+\frac{2006}{2006}+\frac{x^2-2006}{2005}+\frac{2005}{2005}=\frac{x^2-2005}{2004}+\frac{2004}{2004}+\frac{x^2-2004}{2003}+\frac{2003}{2003}+\frac{x^2-2003}{2002}+\frac{2002}{2002}\)

=> \(\frac{x^2-1}{2007}+\frac{x^2-1}{2006}+\frac{x^2-1}{2005}=\frac{x^2-1}{2004}+\frac{x^2-1}{2003}+\frac{x^2-1}{2002}\)

=> \(\frac{x^2-1}{2007}+\frac{x^2-1}{2006}+\frac{x^2-1}{2005}-\frac{x^2-1}{2004}-\frac{x^2-1}{2003}-\frac{x^2-1}{2002}=0\)

=> \(\left(x^2-1\right)\left(\frac{1}{2007}+\frac{1}{2006}+\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}-\frac{1}{2002}\right)=0\)

=> \(x^2-1=0\)

=> \(x^2=1\)

=> \(x=\pm1\)

Vậy phương trình có 2 nghiệm là x = 1, x = -1 .

Khách vãng lai đã xóa
Hoàng Thị Giang
Xem chi tiết
Lê Hiển Vinh
21 tháng 8 2016 lúc 9:02

Ta có: \(2006^x=2005^y+2004^z>1\)

\(\Rightarrow x\ge1\)

Vì \(2006^x\) là số chẵn, \(2005^y\) là số lẻ 

nên \(2004^z\) là số lẻ

\(\Rightarrow z=0\)

Lúc đó, ta có phương trình: \(2006^x=2005^y+1\)

Lại có: \(\hept{\begin{cases}2005\equiv1\left(mod4\right)\Rightarrow2005^y+1\equiv2\left(mod4\right)♣\\2006=4m+2\Rightarrow2006^x=4k+2^x\end{cases}}\) 

Với \(x\ge2\) thì \(2006^x\) chia hết cho 4, mâu thuẫn với ♣.

      Vậy \(x=y=1;z=0\)

Uzumaki Naruto
21 tháng 8 2016 lúc 9:00

Có 1 trường hợp là \(x=1;y=1;z=0\)

soyeon_Tiểu bàng giải
21 tháng 8 2016 lúc 9:05

+ Với x = 0 thì 2006x = 20060 = 1, vô lí vì 2005y + 2004z > hoặc = 2

=> x > 0

=> 2006x là số chẵn mà 2005y luôn lẻ với mọi y là số tự nhiên

=> 2004z là số lẻ => z = 0

Ta có: 2006x = 2005y + 20040 = 2005y + 1

+ Ta thấy với x = 1; y = 1 thỏa mãn đề bài: 2006 = 2005 + 1, chọn

+ Với x, y > 1

Do 2005 chia 4 dư 1, mũ lên bao nhiêu vẫn chia 4 dư 1 => 2005y chia 4 dư 1

Mà 1 chia 4 dư 1 => 2005y + 1 chia 4 dư 2, vô lí vì 2006x với x > 1 chia hết cho 4

Vậy x = 1; y = 1; z = 0

Nguyễn Mạnh Khôi
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
16 tháng 5 2016 lúc 21:23

Có 1 trường hợp là : x = 1 ; y = 1 ; z = 0 

l҉o҉n҉g҉ d҉z҉
16 tháng 5 2016 lúc 21:19

không có  trường hợp nào  

Nguyễn Mạnh Khôi
16 tháng 5 2016 lúc 21:21

có đó! bn xem lại đi

Pii Nhok
Xem chi tiết
khoi
9 tháng 8 2017 lúc 20:25

thoi minh luoi lam minh ko giai het duoc dau

Pii Nhok
9 tháng 8 2017 lúc 20:25

- Đề bài bài 4 nhầm nha. 

- Phải là : 19^x + 5^y + 1980z = 1975^430 + 2004

Pii Nhok
9 tháng 8 2017 lúc 20:27

- Bạn Khoi giai giúp mk đi. Please !!!

Nguyễn Giang
Xem chi tiết
Nguyen Viet Tien
18 tháng 3 2015 lúc 20:48

Bài này quá dễ em à

X=1

Y=1

Z=0

Nguyễn Giang
23 tháng 2 2015 lúc 20:17

bài này khó quá mình ko biết giải.có bạn nào biết giải chỉ mình với

 

0o0kienlun0o0
11 tháng 3 2018 lúc 17:21

tui đag thắc mắc phần b còn phaàn a vừa mới biết làm xong,

có bạn nào giải được không vậy

NQQ No Pro
Xem chi tiết
thư
Xem chi tiết
Đinh Đức Hùng
6 tháng 11 2017 lúc 21:17

Ta có :\(x+y+z=0\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2xz=0\)

\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+xz\right)=x^2+y^2+z^2=0\) (do xy + yz + xz = 0)

Ta lại thấy \(x^2;y^2;z^2\ge0\forall x;y;z\) nên \(x^2+y^2+z^2\ge0\forall x;y;z\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=0\) thay vào S ta được :

\(S=\left(-1\right)^{2005}+\left(-1\right)^{2006}+1^{2007}=1\)

thanh niên nghiêm túc
Xem chi tiết
linh miêu
19 tháng 10 2015 lúc 20:41

2002/2001>:,2003/2002>1.....

CÓ 8 PHÂN SỐ MỖI PHÂN SỐ CÓ GIÁ TRỊ LỚN HƠN 1 VÂY TỔNG CỦA 8 PHÂN SỐ LỚN HƠN 1 SẼ LỚN HƠN 8.