Tìm các số nguyên tố p thỏa mãn :p^2-p-2/2 là lập phương của số tự nhiên
1a) Tìm các số nguyên tố p để 2p+1 là lập phương của 1 số tự nhiên
b)Tìm các số nguyên tố p đẻ 13p+1 là lập phương của 1 số tự nhiên
2) Cho p là số nguyên tố lớn hơn 2. Chứng minh rằng: có vô số số tự nhiên n thỏa mãn n.2^n-1 chia hết cho p
3) Tìm n thuộc N* để: a) n^4+4 là số nguyên tố
b)n^2003+n^2002+1 là số nguyên tố
1.Tìm tất cả các cặp số tự nhiên (x;y) thỏa mãn phương trình: \(\left(x+1\right)^4-\left(x-1\right)^4=y^3\)
2. Tìm tất cả các số nguyên tố p để 2p+1 là lập phương của 1 số tự nhiên
2,Giải:
♣ Ta thấy p = 2 thì 2p + 1 = 5 không thỏa = n³
♣ Nếu p > 2 => p lẻ (Do Số nguyên tố chẵn duy nhất là 2 )
Mặt khác : 2p + 1 là 1 số lẻ => n³ là một số lẻ => n là một số lẻ
=> 2p + 1 = (2k + 1)³ ( với n = 2k + 1 )
<=> 2p + 1 = 8k³ + 12k² + 6k + 1
<=> p = k(4k² + 6k + 3)
=> p chia hết cho k
=> k là ước số của số nguyên tố p.
Do p là số nguyên tố nên k = 1 hoặc k = p
♫ Khi k = 1
=> p = (4.1² + 6.1 + 3) = 13 (nhận)
♫ Khi k = p
=> (4k² + 6k + 3) = (4p² + 6p + 3) = 1
Do p > 2 => (4p² + 6p + 3) > 2 > 1
=> không có giá trị p nào thỏa.
Đáp số : p = 13
Tìm số nguyên dương nhỏ nhất thỏa mãn các tính chất sau: 1/2 của nó là bình phương của một số tự nhiên nào đó, 1/3 của nó là lập phương của một số tự nhiên nào đó
Tìm số nguyên dương nhỏ nhất thỏa mãn các tính chất sau: 1/2 của nó là bình phương của một số tự nhiên nào đó, 1/3 của nó là lập phương của một số tự nhiên nào đó.
1. CHo số nguyên tố p thỏa mãn p+6 cũng là số nguyên tố . Chứng minh \(p^2+2021\) là hợp số
2.Tìm tất cả các số tự nhiên a để \(a^2+3a\) là số chính phương
1.
\(p=2\Rightarrow p+6=8\) ko phải SNT (ktm)
\(\Rightarrow p>2\Rightarrow p\) lẻ \(\Rightarrow p^2\) lẻ \(\Rightarrow p^2+2021\) luôn là 1 số chẵn lớn hơn 2 \(\Rightarrow\) là hợp số
2.
\(a^2+3a=k^2\Rightarrow4a^2+12a=4k^2\)
\(\Rightarrow4a^2+12a+9=4k^2+9\Rightarrow\left(2a+3\right)^2=\left(2k\right)^2+9\)
\(\Rightarrow\left(2a+3-2k\right)\left(2a+3+2k\right)=9\)
\(\Leftrightarrow...\)
1. Tìm số nguyên tố a biết rằng 2a + 1 là lập phương của một số nguyên tố
2.Tìm các số nguyên tố p để 13p + 1 là lập phương của một số tự nhiên
1.Với a = 2 ta có 2a + 1 = 5 không thích hợp
Với a ≠ 2 do a là số nguyên tố nên a lẽ
Vậy 2a + 1 là lập phương của một số lẽ nghĩa là
Từ đó k là ước của a. Do k là số nguyên tố nên k = 1 hoặc k = a
-Nếu k = 1 thì 2a + 1 = (2.1 + 1)3 suy ra a = 13 thớch hợp
- Nếu a = k từ a = a(4a2 + 6a + 3) do a là nguyên tố nên suy ra
1 = 4a2 + 6a + 3 không có số nguyên tố a nào thoả món phương trỡnh này Vì vế phải luụn lớn hơn 1
Vậy a = 13
2.Giả sử
13 và p là các số nguyên tố , mà n – 1 > 1 và n2 + n + 1 > 1
Nên n – 1 = 13 hoặc n – 1 = p
- Với n – 1 =13 thì n = 14 khi đó 13p = n3 – 1 = 2743 suy ta p = 211 là số nguyên tố
- Với n – 1 = p thi n2 + n + 1 = 13 suy ra n = 3 . Khi đó p = 2 là số nguyên tố
Vậy p = 2, p = 211 thì 13p + 1 là lập phương của một số tự nhiên
a)Tìm số nguyên tố p để 2p+1 là lập phương của 1 số tự nhiên
b)Tìm số nguyên tố p để 13p+1 là lập phương của 1 số tự nhiên
c)Tìm tất cả các số tự nhiên x;y sao cho x2-2y2=1
Câu a =13
Câu b =2 con câu c lam tuong tu
Tìm số nguyên dương nhỏ nhất thỏa mãn :
1/2 số đó là 1 số chính phương
1/3 số đó là lập phương của 1 số tự nhiên
1) Tìm các số tự nhiên n để số 3^n+19 là số chính phương
2) Cho m,n là 2 số nguyên dương thỏa mãn m+n-1 là 1 số nguyên tố và m+n-1 là 1 ước của 2(m^2+n^2)-1 CMR m=n