tìm giá trị nhỏ nhất của biểu thức (√x)/(1+ √x) : 1/(√x-2)
1) tìm giá trị nhỏ nhất của biểu thức:
A=/x-3/+8.
2) tìm giá trị nhỏ nhất của biểu thức:
B= 11- / 4+x /
3) tìm giá trị nhỏ nhất của biểu thức:
a) M=/x-3/+18-x/
b) M= /x-4/+/x-10/
2:
|x+4|>=0
=>-|x+4|<=0
=>B<=11
Dấu = xảy ra khi x=-4
tìm giá trị lớn nhất giá trị nhỏ nhất của biểu thức của biểu thức M= (x^2-y^2)(1-x^2.y^2)/(1+x^2)^2.(1+y^2)^2
a) tìm giá trị lớn nhất của biểu thức A = \(\dfrac{2022}{\left|x\right|+2023}\)
b) tìm giá trị nhỏ nhất của biểu thức B = \(\left(\sqrt{x}+1\right)^{99}+2022\) với \(x\ge0\)
c) tìm giá trị lớn nhất của biểu thức C = \(\dfrac{5-x^2}{x^2+3}\)
d) tìm giá trị lớn nhất của biểu thức D = \(\left|x-2022\right|+\left|x-1\right|\)
a) Để \(A=\dfrac{2022}{\left|x\right|+2023}\) đạt Max thì |x| + 2023 phải đạt Min
Ta có \(\left|x\right|\ge0\forall x\Rightarrow\left|x\right|+2023\ge2023\forall x\)
\(\Rightarrow\dfrac{2022}{\left|x\right|+2023}\le\dfrac{2022}{2023}\forall x\)
Dấu "=" xảy ra khi \(\left|x\right|=0\Rightarrow x=0\)
Vậy Max \(A=\dfrac{2022}{\left|x\right|+2023}=\dfrac{2022}{2023}\) đạt được khi x = 0
b) Để \(B=\left(\sqrt{x}+1\right)^{99}+2022\) đạt Min với \(x\ge0\) thì \(\sqrt{x}+1\) phải đạt Min
Ta có \(\sqrt{x}\ge0\forall x\ge0\Rightarrow\sqrt{x}+1\ge1\forall x\ge0\)
\(\Rightarrow\left(\sqrt{x}+1\right)^{99}+2022\ge1+2022\ge2023\forall x\ge0\)
Dấu "=" xảy ra khi \(\sqrt{x}=0\Rightarrow x=0\)
Vậy Max \(B=\left(\sqrt{x}+1\right)^{99}+2022=2023\) đạt được khi x = 0
Câu c) và d) thì tự làm, ko có rảnh =))))
a) tìm giá trị nhỏ nhất của biểu thức: A=(x+1).(x+2).(x+3).(x+4)+12
b) Tìm giá trị nhỏ nhất của biểu thức:M=(x+1)4+(x+3)4
Tìm giá trị nhỏ nhất của biểu thức: |x-5|+120
Tìm giá trị lớn nhất của biểu thức: 2018-(x-1)^2
Ta có :
\(\left(x-1\right)^2\ge0\)
\(\Rightarrow\)\(2018-\left(x-1\right)^2\le2018\)
Dấu "=" xảy ra khi và chỉ khi \(\left(x-1\right)^2=1\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=1\\x-1=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}}\)
Vậy GTLN của biểu thức \(2018-\left(x-1\right)^2\) là \(2018\) khi \(x=0\) hoặc \(x=2\)
Chúc bạn học tốt ~
Ta có :
\(\left|x-5\right|\ge5\)
\(\Rightarrow\)\(\left|x-5\right|+120\ge120\)
Dấu "=" xảy ra khi và chỉ khi \(\left|x-5\right|=0\)
\(\Leftrightarrow\)\(x-5=0\)
\(\Leftrightarrow\)\(x=5\)
Vậy GTNN của biểu thức \(\left|x-5\right|+120\) là \(120\) khi \(x=5\)
Chúc bạn học tốt ~
. Giúp mình giải những bài trong Violympic nhé !
1. Giá trị của x để biểu thức B = 3 - x2 + 2x đạt giá trị lớn nhất .
2. Giá trị lớn nhất của biểu thức A = - 2x2+x-5 .
3. Giá trị của biểu thức 4x(x+1)-(1+2x)2-9 .
4. Giá trị của x để x2-48x+65 đạt giá trị nhỏ nhất.
5. Giá trị rút gọn của biểu thức (2x-4)(x+3)-2x(x+1).
6. Giá trị nhỏ nhất của biểu thức 4x2-20x+40.
7. Giá trị của x để 3(2x+9)2-1 đạt giá trị nhỏ nhất.
8. Giá trị của x để x2-48x+65 đạt giá trị nhỏ nhất.
9. Giá trị nhỏ nhất của biểu thức A = x(x+1)+3/2 .
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
1 .
3−x2+2x3−x2+2x
=−(x2−2x−3)=−(x2−2x−3)
=−(x2−2.x.1+1−4)=−(x2−2.x.1+1−4)
=−((x−1)2−4)=−((x−1)2−4)
=4−(x−1)2≤4=4−(x−1)2≤4
Vậy MAXB=4⇔x−1=0⇒x=1
2 .
A=2x2−5x+2=2(x2−52x+2516)−98A=2x2−5x+2=2(x2−52x+2516)−98
=2(x−54)2−98=2(x−54)2−98
Ta có : 2(x−54)2≥0∀x;2(x−54)2−98≥−98∀x2(x−54)2≥0∀x;2(x−54)2−98≥−98∀x
Vậy GTNN A = -9/8 <=> x = 5/4
3 .
Tìm giá trị của x để biểu thức:
P=(x-1)(x+2)(x+3)(x+6) có giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó
Tìm giá trị nhỏ nhất của biểu thức sau:A=2+3×√x^2+1 B=√x+8 -7 Tìm giá trị lớn nhất của biểu thức sau: E=3-√x+6 F= 4/3+√2-x
1:
a: \(A=2+3\sqrt{x^2+1}>=3\cdot1+2=5\)
Dấu = xảy ra khi x=0
b: \(B=\sqrt{x+8}-7>=-7\)
Dấu = xảy ra khi x=-8
tìm giá trị nhỏ nhất của biểu thức x2+x+1
tìm giá trị lớn nhất của biểu thức -3x2+7x+1
GTNN:
\(\Leftrightarrow x^2+2\frac{1}{2}x+\frac{1}{4}-\frac{1}{4}+1\)
\(\Leftrightarrow x^2+2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy Min của biểu thức trên =3/4 khi x+1/2=0 => x=-1/2
GTLL:
\(\Leftrightarrow-3\left(x^2-\frac{7}{3}x-\frac{1}{3}\right)\)
\(\Leftrightarrow-3\left(x^2-2.\frac{7}{6}x+\frac{49}{36}-\frac{49}{36}-\frac{1}{3}\right)\)
\(\Leftrightarrow-3\left(x^2-2.\frac{7}{6}x+\frac{49}{36}-\frac{61}{36}\right)\)
\(\Leftrightarrow-3\left[\left(x-\frac{7}{6}\right)^2-\frac{61}{36}\right]\)
\(\Leftrightarrow-3\left(x-\frac{7}{6}\right)^2+\frac{61}{12}\le\frac{61}{12}\)
Vậy Max của biểu thức trên = 61/12 khi x-7/6=0 => x=7/6
nha . cảm ơn . chúc bạn học tốt
Bài 1: Tìm giá trị nhỏ nhất của biểu thức: A=|x+5|+|x+2|+|x-7|+|x-8|
Bài 2: Tìm giá trị lớn nhất của biểu thức: B=|x+5|-|x-2|
2: B=|x+5|-|x-2|<=|x+5-x+2|=7
Dấu = xảy ra khi -5<=x<=2